Немножко истории
Появление в середине XX века транзисторов казалось приведет к полному вытеснению из радиотехники господствующих тогда электронных ламп.
Одним из основных недостатков радиоламп считалась их низкая экономичность. Нагреваемый катод потреблял значительную энергию и имел малый срок службы. В упрек электронной лампе ставилась трудоемкость ее изготовления, необходимо было выдерживать высокоточную геометрию большого числа электродов в вакуумном баллоне лампы.
Производство радиоэлектронной аппаратуры на лампах постепенно сворачивалось. В нашей стране количество выпускаемой аппаратура на радиолампах хотя и постепенно снижалось, но заводы по производству ламп продолжали работать. Как ни странно, это принесло отечественной промышленности в начале 90-х годов определенную выгоду.
В этом основную роль сыграли меломаны. В конце концов оказалось, что усилители звуковой частоты на электронных лампах передают звукозапись лучше, более естественно, чем на полупроводниковых триодах.
В настоящее время рынок Hi-Fi аппаратуры
заполнен звуковоспроизводящей аппаратурой на электронных лампах
, в основном, российского производства.
Из всего этого можно сделать вывод, что конструирование радиоаппаратуры на электронных лампах на пороге начала XXI века не несет регресс в радиоэлектронику, а наоборот, позволяет по-новому, более разумно взглянуть на область применения электронных ламп.
Принцип работы радиоэлектронной лампы основан на явлении термоэлектронной эмиссии. Процесс вылета электронов с поверхности твердых или жидких тел называют электронной эмиссией.
1. Принцип действия
Электронная лампа RCA ‘808’
1.1. Вакуумные электронные лампы с подогреваемым катодом
- В результате термоэлектронной эмиссии электроны покидают поверхность катода.
- Под воздействием разности потенциалов между анодом и катодом электроны достигают анода и образуют анодный ток во внешней цепи.
- С помощью дополнительных электродов (сеток) осуществляется управление электронным потоком путём подачи на эти электроды различного электрического потенциала.
В вакуумных электронных лампах наличие газа ухудшает характеристики лампы.
1.2. Газонаполненные электронные лампы
Основным для этого класса устройств является поток ионов и электронов в газе, наполняющем лампу. Поток может быть создан, как и в вакуумных устройствах, термоэлектронной эмиссией, а может создаваться образованием электрического разряда в газе за счёт напряжённости электрического поля.
История
В 1883 году Эдисон пытался увеличить срок службы осветительной лампы с угольной нитью накаливания в вакууммированной стеклянной колбе. С этой целью в одном из опытов он ввёл в вакуумное пространство лампы металлическую пластину с проводником, выведенным наружу. При экспериментах он заметил, что вакуум проводит ток, причём только в направлении от электрода к накалённой нити и только тогда, когда нить накалена. Это было неожиданно для того времени — считалось, что вакуум не может проводить ток, так как в нём нет носителей заряда. Изобретатель не понял тогда значение этого открытия, но на всякий случай запатентовал.
Благодаря этим экспериментам Эдисон стал автором фундаментального научного открытия, которое является основой работы всех электронных ламп и всей электроники до создания полупроводниковых приборов. Впоследствии это явление получило название термоэлектронная эмиссия.
В 1905 году этот «эффект Эдисона» стал основой британского патента Джона Флеминга на «прибор для преобразования переменного тока в постоянный» — первую электронную лампу, открывшую век электроники.
В 1906 году американский инженер Ли де Форест ввёл в лампу третий электрод — управляющую сетку (и, таким образом, создал триод). Такая лампа могла уже работать в качестве усилителя тока, а в 1913 году на её основе был создан автогенератор. В 1921 году А. А. Чернышёвым предложена конструкция цилиндрического подогревного катода (катода косвенного накала).
Вакуумные электронные лампы стали элементной базой компьютеров первого поколения. Главным недостатком электронных ламп было то, что устройства на их основе были довольно громоздкими, а при большом количестве ламп, например, в первых ЭВМ, частые единичные выгорания приводили к значительному простою на ремонт. Причем в логических схемах не всегда можно было вовремя обнаружить поломку, машина могла продолжать работать выдавая ошибочные результаты. Для питания ламп необходимо было подводить дополнительную энергию для нагрева катода (именно он испускает электроны, необходимые для тока в лампе), а образованное ими тепло отводить. Например, в первых компьютерах использовались тысячи ламп, которые размещались в металлических шкафах и занимали много места. Весила такая машина десятки тонн. Для её работы требовалась электростанция. Для охлаждения машины использовали мощные вентиляторы в связи с выделением лампами огромного количества тепла.
Пик расцвета («золотая эра») ламповой схемотехники пришёлся на 1935—1950 годы.
Электрические параметры ламп
В современных высококачественных усилителях звуковой частоты, в основном, отдается предпочтение трехэлектродным лампам, называемых триодами. Общими основными электрическими параметрами приемо-усилительных ламп, которые обычно приводятся в справочниках, являются следующие: коэффициент усиления ц, крутизна характеристики S и внутреннее сопротивление Rj.
Важное значение имеют так называемые статические характеристики лампы: анодно-сеточная и анодная характеристики, которые представляются в виде графика. Имея эти две характеристики, можно графически определить три приведенных выше основных параметра ламп
Для ламп различного назначения к перечисленным характеристикам добавляются специальные, характерные для них параметры
Имея эти две характеристики, можно графически определить три приведенных выше основных параметра ламп. Для ламп различного назначения к перечисленным характеристикам добавляются специальные, характерные для них параметры.
Лампы, используемые в усилителях звуковой частоты, характеризуются еще такими параметрами, которые зависят от того или иного режима работы выходной лампы, в частности, выходной мощностью и коэффициентом нелинейных искажений.
У высокочастотных ламп
характерными параметрами являются
:
- входная емкость,
- выходная емкость,
- проходная емкость,
- коэффициент широкополосности
- эквивалентное сопротивление внутриламповых шумов.
При этом чем меньше суммарное значение входной и выходной междуэлектродных емкостей лампы и больше крутизна ее характеристики, тем больше усиление она дает на высших частотах.
Отношение крутизны характеристики лампы к ее проходной емкости служит показателем устойчивости усиления. Большее усиление от высокочастотной лампы можно получить на высоких частотах, в случае когда меньше суммарное значение входной и выходной емкостей лампы и больше крутизна ее характеристики.
При выборе лампы для первых каскадов усиления, особо следует обращать внимание на ее эквивалентное сопротивление внутриламповых шумов. Эффективность работы частотопреобразовательных ламп оценивается крутизной преобразования
Крутизна преобразования, как правило, в 3…4 раза меньше крутизны характеристики лампы. Ее значение возрастает при увеличении напряжения гетеродина
Эффективность работы частотопреобразовательных ламп оценивается крутизной преобразования. Крутизна преобразования, как правило, в 3…4 раза меньше крутизны характеристики лампы. Ее значение возрастает при увеличении напряжения гетеродина.
Для кенотронов основным параметром является амплитуда обратного напряжения. Наибольшие значения амплитуды обратного напряжения характерны для высоковольтных кенотронов.
3. Конструкция
Элементы электронной лампы (пентода):
Нить накала, катод, три сетки, анод. Вверху — элементы крепления и кольцо с поглотителем остатков воздуха.
Электронные лампы имеют два и более электродов: катод, анод и сетки.
3.1. Катод
Для того, чтобы обеспечить эмиссию электронов с катода, его дополнительно подогревают
По способу подогрева катоды подразделяются на катоды прямого и косвенного накала.
Катод прямого накала представляет собой металлическую нить. Лампы прямого накала потребляют меньшую мощность и быстрее разогреваются, однако, обычно имеют меньший срок службы, при использовании в сигнальных цепях требуют питания накала постоянным током, а в ряде схем неприменимы из-за влияния разницы потенциалов на разных участках катода на работу лампы.
Катод косвенного накала представляет собой цилиндр, внутри которого располагают нить накала (подогреватель). Такие лампы называются лампами косвенного накала.
Катоды ламп активируют металлами, имеющими малую работу выхода. В лампах прямого накала для этого обычно применяют торий, в лампах косвенного накала — барий. Несмотря на наличие тория в катоде, лампы прямого накала не представляют опасности для пользователя, поскольку его излучение не выходит за пределы баллона.
3.2. Анод
Анод электронной лампы
Положительный электрод. Выполняется в форме пластины, чаще коробочки имеющей форму цилиндра или параллелепипеда. Изготавливается обычно из никеля или молибдена, иногда из тантала и графита.
3.3. Сетка
Между катодом и анодом располагаются сетки, которые служат для изменения потока электронов и устранения различных вредных явлений, возникающих при движении электронов от катода к аноду.
Сетка может представлять собой решетку из тонкой проволоки или (чаще) проволочную спираль, навитую на несколько поддерживающих стоек (траверс). В стержневых лампах роль сеток выполняет система из нескольких тонких стержней, параллельных катоду и аноду, и физика их работы иная, чем в традиционной конструкции.
По назначению сетки подразделяются на следующие виды:
Управляющая сетка, изменением напряжения на которой можно регулировать силу анодного тока лампы, тем самым заставляя её усиливать сигнал;
Экранирующая сетка, устраняющая паразитную связь между управляющей сеткой лампы и её анодом. Эту сетку соединяют с положительным полюсом источника анодного питания. Если вывод анода случайно отойдёт, через эту сетку может потечь ток значительной силы, что приведёт к повреждению лампы. Для предотвращения этого явления последовательно с экранирующей сеткой включают резистор сопротивлением в несколько килоом;
Антидинатронная сетка, устраняющая динатронный эффект, возникающий при ускорении электронов полем экранирующей сетки. Противодинатронную сетку соединяют с катодом лампы, иногда такое соединение сделано внутри баллона лампы.
В зависимости от назначения лампы, она может иметь до семи сеток. В некоторых вариантах включения многосеточных ламп отдельные сетки могут выполнять роль анода. Например, в генераторе по схеме Шембеля на тетроде или пентоде собственно генератором служит «виртуальный» триод, образованный катодом, управляющей сеткой и экранирующей сеткой в качестве анода.
3.4. Баллон
Блестящее напыление (геттер), которое можно видеть на стекле большинства электронных ламп, выполняет двойную функцию — адсорбент остаточных газов, а также индикатор вакуума (многие виды геттера белеют при попадании воздуха в лампу в случае нарушения её герметичности).
Металлические электроды (токовводы), проходящие через стеклянный корпус лампы, должны быть согласованы по коэффициенту теплового расширения с данной маркой стекла и хорошо смачиваться расплавленным стеклом. Их выполняют из платины (редко), платинита, молибдена и др.
Крафт[]
Все лампы создаются с помощью электролампового завода.
Ингредиенты | Процесс | Результат |
Эффект у печатной платы |
---|---|---|---|
Медные слитки, Красная пыль,Стекло или стеклянная панель или песок. |
|
Медные электронные лампы | Электродвигатель:Пониженное напряжение (1*)Понижает выходную мощность на 10 RF/т.Понижает потребляемую мощность на 2 EU/т.
Мультиферма:Ферма кактусов. В качестве почвы используется земля или песок. |
Оловянные слитки, Красная пыль,Стекло или стеклянная панель или песок. | Оловянные электронные лампы | Электродвигатель:Добавочное напряжение I (2*)Повышает выходную мощность на 20 RF/т.Повышает потребляемую мощность на 7 EU/т.
Мультиферма:Тростник. В качестве почвы используется земля или песок. |
|
Бронзовые слитки, Красная пыль,Стекло или стеклянная панель или песок. | Бронзовые электронные лампы | Электродвигатель:Добавочное напряжение II (2*)Повышает выходную мощность на 40 RF/т.Повышает потребляемую мощность на 15 EU/т.
Мультиферма:Ферма урожая (пшеница, морковь, картофель, свёкла). В качестве почвы используется земля. |
|
Железо, Красная пыль,Стекло или стеклянная панель или песок. | Железные электронные лампы | Электродвигатель:Электроэффективность (1*)Понижает потребляемую мощность на 2 EU/т.
Мультиферма:С железной электролампой Вы получите ферму картофеля и моркови. |
|
Золото, Красная пыль,Стекло или стеклянная панель или песок. | Золотые электронные лампы | Машины (соковыжималка, центрифуга)**:Повышение эффективности Уменьшает электропотребление на 10 %.
Мультиферма:После припаивания к печатной плате и установке её в соответствующий слот Фермы, она будет выполнять роль дендрария. То есть сажать и срубать любые деревья, собирая при этом с них все выпадающие вещи (яблоки, древесину, саженцы). Но ферма по умолчанию работает в роли дендрария |
|
Алмаз, Красная пыль,Стекло или стеклянная панель или песок. | Алмазные электронные лампы |
Мультиферма:Какао-бобы. Сажаются исключительно на само тропическое дерево. |
|
Обсидиан, Красная пыль,Стекло или стеклянная панель или песок. | Обсидиановые электронные лампы |
Мультиферма:Вы получите ферму торфа. В качестве почвы будет использоваться болотная земля. |
|
Огненный порошок, Красная пыль,Стекло или стеклянная панель или песок. | Огненные электронные лампы | Машины (соковыжималка, центрифуга)**:Повышение скорости II Увеличивает скорость работы на 25 % Увеличивает использование энергии на 10 %.
Мультиферма:С ней вы получите ферму адского нароста. В качестве почвы используется песок душ. (Только управляемая ферма). |
|
Резина, Красная пыль,Стекло или стеклянная панель или песок. | Прорезиненные электронные лампы |
Мультиферма:С этими лампами ферма будет собирать смолу с предварительно посаженных и выращенных каучуковых деревьев (гевеи). Очень удобно, учитывая что гевеей можно засадить буквально каждый сантиметр фермы. |
|
Изумруд, Красная пыль,Стекло или стеклянная панель или песок. | Изумрудные электронные лампы | Машины (соковыжималка, центрифуга)**:Повышение скорости I Увеличивает скорость работы на 12,5 % Увеличивает электропотребление на 5 %.Мультиферма:
Фруктовый сад. |
|
Апатит, Красная пыль,Стекло или стеклянная панель или песок. | Апатитовые электронные лампы |
Мультиферма:Производит Огромные грибы. В качестве почвы используется мицелий и подзол. |
|
Лазурит, Красная пыль,Стекло или стеклянная панель или песок. | Лазуритовые электронные лампы | Мультиферма:Ферма бахчёвых (тыкв и арбузов, только ручная). | |
Камень Края, Око Края,Стекло или стеклянная панель или песок. | Электронные лампы Края | Не имеют применения.Если установлена модификация Extra Utilities 2:
Мультиферма:С ней вы получите ферму цветков и плодов коруса. В качестве почвы используется камень Края. |
*В скобках названий эффектов указано, сколько раз можно использовать лампу на печатной плате. **Доступно с версии 4.0
Условное графическое изображение радиоламп
Простейшей усилительной лампой является триод
. Его условное графическое изображение на радиоэлектронных схемах представляется в виде окружности. Внутри окружности, в верхней ее части, нарисована вертикальная прямая с перпендикулярным отрезком на конце, что символизирует анод, по диаметру окружности в виде штрихов обозначается сетка, а в нижней части, дугой с отводами на концах — нить накала.
Дужкой над нитью накала обозначают подогреватёль катода. Лампы с прямым накалом нити в своем условном графическом изображении не имеют такой дужки, например, батарейного типа 2К2П, а также некоторые другие типы ламп. В одном баллоне лампы может находиться триод в комбинации с другим типом ламп.
Это так называемые комбинированные лампы. На схемах рядом с изображением лампы ставится ее буквенное обозначение (две латинские буквы V и L) с порядковым номером по схеме (например, VL1) и возле них тип используемой лампы в конструкции (например, VL1 6Н1П). Условное графическое изображение электронных ламп различных типов с буквенным обозначением приведено на рис. 1.
На рисунке буквами с цифрами обозначены: а — анод, С1 — управляющая сетка, к — катод и н — нить накала. Для генерации, усиления и преобразования сигналов в настоящее время в конструкциях радиолюбителей используются, в основном, электронные лампы с октальным цоколем, пальчиковой серии и миниатюрной серии с гибкими выводами.
Последние два типа ламп не имеют цоколя, выводы в них вплавлены прямо в стеклянный баллон. Баллоны перечисленных серий ламп, в основном, изготовлены из стекла, но встречаются и из металла (рис. 2).
Рис. 1. Условное графическое изображение и буквенное обозначение электронных ламп различного типа на радиоэлектронных схемах: а — триод; б, в — двойной триод; г — лучевой тетрод; д — индикатор настройки; е — пентод; ж — гептод; з — двойной диод-триод; и — триод-пентод; к — триод-гептод; л — кенотрон; м — двойной диод с раздельными катодами косвенного накала.
Рис. 2. Варианты конструктивного изготовления электронных ламп: а — стеклянный баллон, октальный цоколь; б — металлический баллон, октальный цоколь; в — стеклянный баллон с жесткими выводами (пальчиковая серия); г — стеклянный баллон с гибкими выводами (безцокольная серия).
Принцип действия
Вакуумные электронные лампы с подогреваемым катодом
- В результате термоэлектронной эмиссии электроны покидают поверхность катода.
- Под воздействием разности потенциалов между анодом (+) и катодом (-) электроны достигают анода и образуют анодный ток во внешней цепи.
- С помощью дополнительных электродов (сеток) осуществляется управление электронным потоком путём подачи на эти электроды электрического потенциала.
В вакуумных электронных лампах наличие газа ухудшает характеристики лампы.
Газоразрядные электронные лампы
Основным для этого класса устройств является поток ионов в газе, наполняющем лампу. Поток может быть создан, как и в вакуумных устройствах, термоэлектронной эмиссией, а может создаваться разрядом в разреженном газе за счёт напряжённости электрического поля. Как правило, такие лампы используются либо в низкочастотных генераторах (тиратроны), либо в схемах управляемых выпрямителей, часто с высокими выходными токами (игнитрон).
Типы газоразрядных электронных ламп:
- неоновая лампа
- стабилитрон
- ионный разрядник
- тиратрон
- игнитрон
Неоновая лампа
Неоновая лампа — газосветный прибор тлеющего разряда, состоящая из стеклянного баллона, в котором располагаются два электрода (катод и анод). Баллон наполнен инертным газом (неоном) при небольшом давлении. Электроды изготавливаются из неактивированного металла, например никеля, и могут быть различной формы (два цилиндрических, два плоских и др.)
Неоновые лампы излучают оранжево-красное свечение небольшой интенсивности и используются в частности как сигнальные. Неоновую лампу необходимо включать с ограничительным сопротивлением, иначе разряд сразу переходит в дуговой и лампа выходит из строя.
Газоразрядный стабилитрон представляет собой стеклянный баллон, в котором находятся два электрода — катод и анод. Катод имеет форму цилиндра с большой поверхностью, анод — стержень, расположенный вдоль оси катода. Внутренняя поверхность катода активируется. Баллон наполняется аргоном, неоном или смесью газов при давлении в несколько десятков миллиметров ртутного столба. Благодаря большой поверхности катода, напряжение между электродами при значительных изменениях тока остается неизменным.
Параметрами стабилитрона являются: напряжение зажигания, напряжение горения, минимальный и максимальный ток. Величина напряжения стабилизации зависит от вида газа и материала катода, которым наполнен баллон.
Кроме стабилитронов с тлеющим разрядом, описанных выше, существуют стабилитроны с коронным разрядом. Устройство данных стабилитронов схоже со стабилитронами тлеющего разряда. Баллон наполняется водородом при низком давлении. Стабилитроны с коронным разрядом имеют в несколько раз более высокие значения напряжения горения, и позволяют стабилизировать напряжение порядка 300—1000 В и более. Однако ток, проходящий через такой стабилитрон в сотни раз меньше чем у стабилитронов с тлеющим разрядом.
Процесс миниатюризации электронных вакуумных ламп привел к отказу от подогреваемых катодов и переходу на автоэлектронную эмиссию с холодных катодов специальной формы из специально подобранных материалов. Это дает возможность довести размеры устройств до микронных размеров и использовать при их изготовлении стандартные техпроцессы полупроводниковой индустрии. В настоящее время такие конструкции активно исследуются.
Современные применения
Высокочастотная и высоковольтная мощная техника
- В мощных радиовещательных передатчиках (от 100 Вт до единиц мегаватт) в выходных каскадах применяются мощные и сверхмощные лампы с воздушным или водяным охлаждением анода и высоким (более 100 А) током накала. Магнетроны, клистроны, лампы бегущей волны (ЛБВ) обеспечивают сочетание высоких частот, мощностей и приемлемой стоимости (а зачастую другая элементная база в принципе неосуществима).
- Магнетрон можно встретить не только в радаре, но и в микроволновой печи.
- При необходимости выпрямления или быстрой коммутации нескольких десятков киловольт, которую невозможно осуществлять механическими ключами, необходимо использовать радиолампы. Так, кенотрон обеспечивает приемлемую динамику на напряжениях до миллиона вольт.
Военная промышленность
Из-за принципа действия электронные лампы являются устройствами, значительно более устойчивыми к таким поражающим факторам, как электромагнитный импульс. В единственном устройстве может быть несколько сотен ламп. В СССР для применения в бортовой военной аппаратуре в 1950-е годы были разработаны стержневые лампы, отличавшиеся малыми размерами и большой механической прочностью.
Космическая техника
Радиационная деградация полупроводниковых материалов и наличие естественного вакуума межпланетной среды делает применение некоторых типов ламп средством повышения надёжности и долговечности космических аппаратов. Применение в АМС Луна-3 транзисторов было связано с большим риском.
Повышенная температура среды и радиация
Ламповое оборудование может быть рассчитано на больший температурный и радиационный диапазон условий, нежели полупроводниковое.
Звукотехническая аппаратура
Электронные лампы до сих пор находят применение в звукотехнике, как любительской, так и профессиональной. Конструирование ламповых звукотехнических устройств является одним из направлений современного радиолюбительского движения.
Благодаря специфическим особенностям искажения (т. н. «теплое ламповое звучание»), которые до настоящего времени не удалось полностью воспроизвести в широкой практике при использовании полупроводниковых аналогов или цифровой эмуляции, электронные лампы весьма популярны в усилении звучания электрогитары.