Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

Классификация

  • По методу измерения — приборы непосредственной оценки (напр. аналоговые) и приборы сравнения (напр. резонансные, гетеродинные, электронно-счетные).
  • По физическому смыслу измеряемой величины — для измерения частоты синусоидальных колебаний (аналоговые), измерения частот гармонических составляющих (гетеродинные, резонансные, вибрационные) и измерения частоты дискретных событий (электронно-счетные, конденсаторные).
  • По исполнению (конструкции) — щитовые, переносные и стационарные.
  • По области применения частотомеры включаются в два больших класса средств измерений — электроизмерительные приборы и радиоизмерительные приборы. Следует заметить, что граница между этими группами приборов весьма прозрачна.

Это интересно: Провод для точечных светильников — сечение, марка, требования

Лучшие цифровые вольтметры

Использование для определения напряжения цифровых вольтметров постоянного тока отличается простотой применения. Пользователю не требуется делать расчеты и запоминать данные: это сделает электроника. Приборы имеют небольшой вес, отличаются улучшенной точностью и высокой чувствительностью. Устройства измеряют напряжение в широком диапазоне, обладают хорошим функционалом.

Digitop АVМ-1

Украинский цифровой амперметр вольтметр разработан для измерений основных параметров работы однофазной электросети. Информация выводится на электронный дисплей, с которого легко считываются показания. Полностью отсутствует механическая часть, которую заменила высокоточная электронная вычислительная схема. Это позволило снизить погрешность до 1% и обеспечить стабильность во время работы.

Измерение тока выполняется с помощью внешнего трансформатора, который идет в комплекте. Диапазон измерения напряжения 40-400 В, шкала силы тока – от 1 до 63 А. Прочный корпус защищен от воздействия пыли и повышенной влажности. Класс защиты – IP20, стабильно работает при температуре от 5 до 50 градусов.

Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

Достоинства:

  • Хорошо читаются все символы;
  • Простой монтаж;
  • Гарантия производителя 3 года;
  • Выдвинутый вперед дисплей;
  • Прочный корпус.

Недостатки:

Высокая стоимость.

Fluke T150

Профессиональный тестер-пробник, разработанный американскими инженерами. Производство локализовано в Румынии. Используется для диагностики электроприборов и электрических сетей. Для информирования пользователя о снятых показаниях и режимах работы используется дисплей, на который выводятся данные, вибрация и звуковой сигнал. ЖК-дисплей имеет подсветку, что делает удобным использование в помещениях с плохим освещением.

Устройство соответствует европейским стандартам безопасности, имеются соответствующие сертификаты. При необходимости определить, какой из проводников находится под напряжением, используется функция однофазной проверки. Напряжение переменного тока измеряется в широком диапазоне от 6 до 690 вольт. Особенностью является корпус с высоким классом защиты от пыли и влаги – IP64, изготовленный из антискользящих материалов.

Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

Достоинства:

  • Питание от батарей АА;
  • Удобное крепление щупов;
  • Проверка УЗО;
  • Фиксация полученных данных;
  • «Умная» изоляция проводов щупов;
  • Удобный формат.

Недостатки:

Высокая цена.

TDM Еlectric ЦП-В72х3

Щитовой вольтметр, предназначенный для измерений силы тока, напряжения и частоты трехфазной электросети. Оборудованием комплектуют распределительные устройства муниципальных объектов, жилых домов и производственных помещений. Корпус изготовлен из ударопрочного, негорючего пластика, который обладает способностью к самозатуханию. Продукция соответствует нормативам пожарной безопасности.

Модель имеет три дисплея, на которые выводятся данные по трем фазам одновременно. Максимальное напряжение – 600В. Корпус эффективно защищен от влаги и пыли, соответствует требованиям к классу IP54. Электрики могут использовать модель в однофазных сетях и измерять напряжение на разных участках. Имеет высокую чувствительность к малым токам, чем отличается от аналогичных стрелочных устройств.

Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

Достоинства:

  • Простой монтаж;
  • Высокий класс точности;
  • Наличие сертификатов;
  • Межповерочный интервал 8 лет;
  • Низкая цена.

Недостатки:

Не обнаружены.

Testo 750-3

Немецкий прибор, созданный для измерений напряжения переменного и постоянного тока, выявления дефектов соединений и повреждений проводки. Имеет эргономичный корпус, который не выскальзывает из рук. Текущие показания выводятся на жидкокристаллический дисплей. Цифры высвечиваются четко, позволяя легко снимать данные. Корпус соответствует стандарту IP64.

Имеет сертификат электробезопасности CAT IV, включен в Государственный реестр. Использовать можно при температуре от -10 до +50 градусов. Рабочий диапазон измеряемого напряжения от 12 до 690 В, допустимая погрешность – не более 3%. Поставляется с защитными колпачками для щупов, набором сменных наконечников. Работает от батареек ААА.

Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

Достоинства:

  • Оптоволоконная технология;
  • Проверка УЗО с функцией вибросигнализации;
  • Наличие фонаря;
  • Прочный корпус;
  • Защита от случайного запуска теста отключения.

Недостатки:

Высокая цена.

Токовые трансформаторы с ферритовым разъемным сердечником

Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

Рис. 2. Трансформатор тока с ферромагнитным разъемным сердечником (800 A) и с ферритовым разъемным сердечником (100 A)

Хотя ферритовые материалы были хорошо известны в течение многих лет, низкие значения индукции насыщения и магнитной проницаемости не позволяли использовать их на таких низких частотах, как 50/60 Гц. Однако последние технологические достижения кардинально изменили характеристики ферритов на низких частотах и обеспечили массу преимуществ от их применения в широком спектре приложений, связанных с энергетическим мониторингом. У новых типов ферритов значительно улучшена магнитная проницаемость, что позволяет использовать их в трансформаторах тока вместо FeNi- или FeSi-сердечников, несмотря на низкий уровень магнитного насыщения.

Трансформаторы с разъемным сердечником на основе новых видов ферритов могут выполнять точные измерения сигналов переменного тока в расширенном диапазоне частот, включая 50/60 Гц (рис. 2). Они используют присущие ферриту качества, обеспечивающие высокую точность и отличную линейность даже при очень низких уровнях измеряемого тока. Ферритовые трансформаторы имеют малый фазовый сдвиг между входным и выходным током, что необходимо для точного измерения истинной активной мощности или энергии. Благодаря высокой твердости материала сердечника удается минимизировать воздушные зазоры, кроме того, феррит практически нечувствителен к старению и перепадам температуры (в отличие от FeNi или FeSi).

Последний, но не менее важный факт состоит в том, что все описанные качества ферритов доступны без больших финансовых затрат, что позволяет предлагать разъемные трансформаторы тока с хорошими параметрами по очень привлекательной цене. Для измерения высоких токов необходимы ферритовые сердечники больших габаритов, производство которых связано с некоторыми технологическими ограничениями. В этом случае больше подходят пермаллоевые трансформаторы или катушки Роговского.

Популярные статьи  Тесьма крючком схемы ? красивая окантовка, обвязка скатерти, пледа, платьев, юбок, фото, видео

Требования к измерителю тока

Разработчики систем мониторинга электроснабжения должны тщательно выбирать датчики тока с учетом их специфических характеристик.

Точность

В большинстве применений точность измерения напрямую влияет на эффективность работы системы в целом. Очевидно, что правильность расчетов мощностных характеристик зависит от точности датчиков тока. Измеритель мощности класса точности 1 требует применения сенсора с погрешностью намного лучше, чем 1%, для изготовления которого необходимы дорогие материалы и производственные процессы. Альтернативный вариант состоит в индивидуальной калибровке измерителя под конкретный датчик тока. Учет конкретных параметров каждого сенсора позволяет использовать его в наиболее точном рабочем режиме и снизить разброс параметров от одного экземпляра к другому. Как мы увидим далее, это открывает возможности применения новых технологий, обеспечивающих высокую линейность, малый дрейф и хорошую повторяемость, путем компенсации индивидуальных погрешностей датчиков.

Дрейф

Дрейф датчика определяется стабильностью его показаний в течение срока службы независимо от первоначальной калибровки системы. Некоторые вариации характеристик сенсора могут быть вызваны изменением влажности и температуры окружающей среды, старением элементов и т. п. Низкий уровень дрейфа означает, что датчик имеет высокую стойкость к таким воздействиям. Это очень важная характеристика для построения высокопроизводительных, стабильных и надежных измерителей мощности.

Линейность

Линейность датчика определяет стабильность его характеристик в пределах рабочих режимов. Высокая линейность аналоговой части сенсора необходима для точного измерения в широком диапазоне токов, особенно при их малых уровнях. Различные технологии обеспечивают хорошие характеристики только в ограниченном диапазоне измерений, что ограничивает область применения в узком спектре либо только больших, либо только маленьких токов.

Фазовый сдвиг

Фазовый сдвиг — точность расчета истинного значения активной мощности или энергии определяется точностью и линейностью измерения не только амплитуды переменного тока и напряжения, но и фазового сдвига, возникающего между этими связанными между собой электрическими величинами. Фазовый сдвиг, безусловно, должен быть как можно ниже.

Интеграция

Трансформатору тока не требуется дополнительного питания, а нужно только два провода для подключения выхода к системе контроля мощности. Многие из них имеют стандартные калиброванные выходы для интеграции в системе контроля мощности. Типовые выходы 1 А, 5 А или 333 мВ совместимы с большинством стандартных промышленных измерителей мощности. Для ваттметров высокой точности необходима калибровка по каждому датчику, которые после этого нельзя заменять. При эксплуатации в системе трансформаторы со слаботочным выходом более безопасны, чем с традиционным выходом 1 А/5 А, и, таким образом, к ним есть доступ в процессе работы системы. Токовые же выходы практически нечувствительны к наводкам, а потому предпочтительнее для использования в тех случаях, когда для трансформатора требуется подключение к измерителю мощности длинным кабелем.

Цена

Цена датчика важна особенно в том случае, когда для измерения мощности в 3-фазной сети нужно три точных сенсора. Однако их стоимость не должна рассматриваться отдельно, необходимо учитывать также расходы на установку и обслуживание устройства. Использование хотя и более дорогого, но надежного и простого в установке и замене датчика с разъемным сердечником может реально снизить стоимость системы в целом.

Приборы для измерения частоты

 В практике испытаний ЭМ приходится измерять частоты в довольно широком диапазоне примерно от 1 Гц до 60 кГц. Для этих целей применяются как аналоговые электромеханические частотомеры, так и цифровые электронно-счетные частотомеры. Возможности применения частотомеров могут быть расширены за счет различных измерительных преобразователей — для измерения температуры, давления, деформации, числа оборотов, скольжения и других величин. Для измерения частоты в сетях переменного тока с частотой 50 Гц применяется частотомер типа Д126, а в сетях с частотой 400 или 500 Гц — частотомер Д126/1 ферродинамической системы, класса точности 1,5. Более совершенными являются частотомеры электронные типа Ф5048 с прибором магнитоэлектрической системы в качестве отсчетного устройства. Частотный диапазон прибора разбит на 21 узкий диапазон измерений со средними частотами от 35 до 5000 Гц. Кроме того, он имеет следующие широкие диапазоны измерений: 0—200; 0— 400; 0—1000; 0—2000; 0—4000; 0—10000; 0—20000 Гц. Допускаемая погрешность не превышает ± 0,5% разности конечного и начального значений диапазона измерений для узких диапазонов измерений и конечного значения диапазона измерений для широких диапазонов измерений. Диапазон входных напряжений 1—500 В. Входное сопротивление прибора не менее 20 МОм. Применение при испытаниях ЭМ электронно-счетных частотомеров (ЭСЧ) с цифровой индикацией позволяет с возможно высокой степенью точности проводить измерение частоты и периода электрических колебаний, длительность импульсов, интервал времени, отношение частот двух сигналов, количество электрических импульсов, отклонение частоты от номинального значения. ЭСЧ работают в диапазоне частот от 0,1 Гц до 50 МГц. Принцип работы ЭСЧ заключается в подсчете числа периодов измеряемых колебаний за определенный промежуток времени. Основными элементами ЭСЧ являются электронный счетчик импульсов (ЭСИ) с запоминающим устройством и системой цифровой индикации; временной селектор; формирующие устройства (ФУ), вырабатывающие нормированные по значению и временным параметрам сигналы; устройство формирования времени счета (УФВС), в состав которого входит блок декадных делителей частоты (ДДЧ), устройство управления, обеспечивающее необходимую синхронизацию работы всех элементов ЭСЧ в различных режимах работы. Рис. 1.17. Электронно-счетный частотомер, работающий в режиме измерения частоты

Рис. 1.18. Электронно-счетный частотомер, работающий в режиме измерения периодов

В режиме измерения частоты (рис. 1.17) импульсы, вырабатываемые из измеряемого сигнала, поступают через селектор, открытый на время, формируемое сигналом образцовой частоты, на ЭСИ, на цифровом табло которого индицируется среднее значение измеряемой частоты в единицах частоты. Время счета (усреднения) тсч = 1, 10, 100 мс, 1 или 10 с определяется числом ДДЧ. В режиме измерения периода (рис. 1.18) УФВС вырабатывает импульс длительностью 1 или 10й (п — целое положительное число) периодов входного сигнала, открывающий селектор. Через открытый селектор на ЭСИ от устройства формирования сигнала (УФС) поступают импульсы, сформированные из сигнала образцовой частоты. На цифровом табло ЭСЧ индицируется значение одиночного или усредненного периода в единицах времени (микросекундах, миллисекундах). Коэффициент усреднения 10″ определяется числом п делителей, включенных в тракт формирования времени счета. Погрешность частотомера не превышает значения нестабильности образцовой частоты внутреннего генератора, суммированного с одной единицей младшего разряда отсчетного устройства. Все ЭСЧ имеют цифровой выход и могут успешно применяться в автоматизированных измерительных системах. Технические данные ЭСЧ приведены в .

Популярные статьи  Расширяем функционал тисков, делаем приспособления для гибки пластин, арматуры

Принципиальная схема микро- наноамперметра

Типичный пример амперметра с активным преобразователем приведен на схеме ниже: 

Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

Чтобы эта зависимость выполнялась в реальных условиях, входное напряжение дисбаланса должно быть очень маленьким, а входной поляризационный ток пренебрежимо малым. Эти параметры становятся особенно важными когда дело доходит до измерений токов порядка пикоампер, на результат которых будет влиять входной поляризационный ток. Есть несколько примеров пикоамперметров на основе микросхемы LMC662. Согласно даташита, м/с имеет очень низкий входной поляризационный ток, порядка 2 фемтоампер. 

Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

В этом устройстве использовался усилитель TS1001 от Touch Stone. Схема имеет посредственные параметры и на первый взгляд не подходит измерять такие маленькие токи. Но особенность, которая отличает микросхему TS1001, заключается в чрезвычайно низком энергопотреблении, схема работает нормально даже при напряжении 0,8 В и потребляет ток 0,8 мкА. Следовательно будет отлично работать в аккумуляторных устройствах, а энергопотребление её настолько мало, что даже не требуется пользоваться кнопкой подачи питания! 

На принципиальной схеме ниже амперметр с активным преобразователем на основе микросхемы TS1001. Применяя разное значения резистора, разрешения варьируются от 1 мА / В до 1 мкА / В в четырех поддиапазонах. Используя любой популярный мультиметр можно измерить ток в диапазоне наноампер. Как упоминалось ранее, входной ток смещения усилителя TS1001 составляет 25 пА, поэтому самый низкий диапазон был специально выбран 1 мкА / В. 

Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

Усилитель может питаться от одного напряжения с мультиметром или использовать виртуальную массу. В случае несимметричного источника измеряемый ток должен поступать на неинвертирующий вход усилителя, чтобы напряжение появлялось на выходе. Следовательно, это решение более выгодно для измерений постоянных токов, где поляризация тока может быть заранее определена. Использование виртуальной массы, как показано на схеме ниже, позволяет измерять постоянные и переменные токи. Схема может питаться от одной 1,5-вольтовой батареи.

Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

Поскольку приставка имеет довольно низкое произведение коэффициента усиления и предельной частоты, можно измерять только токи с низкой изменчивостью (до 60 Гц).

Все устройство питается от одной батареи и поскольку оно используется для измерения только постоянного тока, источник питания с виртуальной массой был отложен. 

Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

Если же необходимо измерить более низкие токи или более высокие частоты, то можете выбрать другой операционный усилитель — например AD8603, который совместим с выводами TS1001 и может использоваться для измерения токов в диапазоне пикоампер. 

   Форум по обсуждению материала ПРИСТАВКА ИЗМЕРИТЕЛЬ МАЛЫХ ТОКОВ

ЭЛЕКТРОЛИЗЕР ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА

Обзор китайского устройства для электролиза воды — фото, видео, описание работы.

В КАКОМ НАПРАВЛЕНИИ ТЕЧЕТ ТОК

В каком направлении течет ток — от плюса к минусу или наоборот? Занимательная теория сути электричества.

ПЛЕЕР MP3, USB, SD, FM НА AC6905A

Обзор типовой схемы проигрывателя MP3, USB, SD, FM на базе чипа AC6905A.

SMD ПРЕДОХРАНИТЕЛИ

Приводятся основные сведения о планарных предохранителях, включая их технические характеристики и применение.

Главные параметры терморезисторов

При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей. При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет

При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет.

Параметры терморезисторов:

  1. ГАБАРИТЫ. При покупке нужно быть уверенным, что деталь подходит по размеру и поместится на плате (в схеме).
  2. СОПРОТИВЛЕНИЯ RT и RT. Параметры измеряются в Омах и указываются применительно к текущей температуре в градусах Цельсия или Кельвинах. Если деталь рассчитана на работу при температурах от -100 до +200 градусов Цельсия, температурный режим для окружающей среды принимается на уровне 20-25 градусов Цельсия.
  3. ПОСТОЯННАЯ ВРЕМЕНИ Τ (СЕК). Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия.
  4. ТКС (в % на один градус Цельсия). Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at.
  5. Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.
  6. Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне).
  7. Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.
  8. Коэффициент рассевания (измеряется в Вт на один градус Цельсия). Условное обозначение — H. Параметр отражает мощность, которая рассеивается на термическом резисторе при разнице в температурных режимах детали и окружающего воздуха на один градус.

Рассмотренные выше коэффициенты (G и H) зависят от характеристик применяемого полупроводника и особенностей обмена тепла между изделием и окружающей его средой. Параметры связаны друг с другом через специальную формулу — G=H/100а.

  1. Теплоемкость (измеряется в Джоулях на один градус Цельсия). Условное обозначение — C. Показатель отражает объем тепла (энергии), необходимой для нагрева терморезистора на один градус.

Некоторые рассмотренные параметры связаны друг с другом. В частности, постоянная времени τ равна отношению между теплоемкостью и коэффициентом рассеивания.

При покупке позитрона, кроме указанных выше параметров, нужно учесть интервал позитивного температурного сопротивления и кратность изменения R в секторе положительного ТКС.

Что такое дифавтомат, для чего применяют, схемы, как подключить

Виды и устройство терморезисторов

Терморезисторы можно разделить на две большие группы по реакции на изменение температуры:

  • если при нагреве сопротивление падает, такие терморезисторы называются NTC-термисторами (с отрицательным температурным коэффициентом сопротивления);
  • если при нагреве сопротивление увеличивается, то термистор имеет положительный ТКС (PTC-характеристику) – такие элементы называют ещё позисторами.
Популярные статьи  Электронная лупа

Тип термистора определяется свойствами материалов, из которых изготовлены терморезисторы. Металлы при нагреве увеличивают сопротивление, поэтому на их основе (точнее, на базе оксидов металлов) выпускают термосопротивления с положительным ТКС. У полупроводников зависимость обратная, поэтому из них делают NTC-элементы. Термозависимые элементы с отрицательным ТКС теоретически можно делать и на основе электролитов, но этот вариант на практике крайне неудобен. Его ниша – лабораторные исследования.

Конструктив термисторов может быть различным. Их выпускают в виде цилиндров, бусин, шайб и т.п. с двумя выводами (как у обычного резистора). Можно подобрать наиболее удобную форму для установки на рабочем месте.

Катушка Роговского

Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

Рис. 4. Принцип работы катушки Роговского

Катушка Роговского используется в разъемном гибком датчике, имеющем вид петли, которой можно легко обхватить проводник с измеряемым током (рис. 4). Она представляет собой спиральную катушку из провода с отводом от одного конца и проходящим через центр катушки отводом от другого конца, так что оба вывода находятся с одной стороны датчика. Длину петли подбирают в соответствии с диапазоном измеряемых токов, что позволяет обеспечить оптимальные передаточные характеристики.

Эта технология предназначена для точного измерения скорости изменения (производной) первичного тока, индуцирующего пропорциональное напряжение на выводах катушки. Для преобразования этого напряжения в выходной сигнал, пропорциональный первичному току, необходимо электронное интегрирующее устройство. Иными словами, с помощью технологии катушки Роговского можно создавать очень точные и линейные датчики тока, но для их работы нужна дополнительная электронная схема и калибровка.

Катушка Роговского имеет меньшую индуктивность, чем трансформатор тока, и, следовательно, лучшие частотные характеристики, что обусловлено отсутствием магнитного сердечника. У нее высокая линейность даже при больших токах, поскольку отсутствует сердечник из железа, который может насыщаться. Таким образом, данный тип датчиков

Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

Рис. 5. Катушка Роговского компании LEM

особенно хорошо подходит для измерения больших или быстро изменяющихся токов. Еще одним преимуществом, особенно для применения в сильноточных системах, является малый размер и простота установки, в то время как традиционные трансформаторы тока большие и тяжелые.

Параметры таких датчиков очень сильно зависят от качества изготовления катушки, поскольку для обеспечения высокой устойчивости к электромагнитным помехам необходим равный интервал между витками. Другим важнейшим узлом, влияющим на параметры, является место соединения петли, поскольку точка разрыва петли определяет чувствительность датчика к влиянию внешних проводников, а также к позиции измеряемого токонесущего проводника, находящегося внутри петли. Система фиксации или зажима должна обеспечивать не только очень точное и воспроизводимое положение выводов катушки, но и высокую симметрию, в то время как один из концов петли подключен к выходному кабелю. Для обеспечения этих требований недавно разработаны новые технологии, имеющие особые механические и электрические параметры и позволяющие значительно повысить точность и ее нечувствительность к позиции измеряемого проводника внутри петли. Ранее погрешность, обусловленная его положением, составляла около ±3% на частоте 50/60 Гц, в новейших датчиках Роговского (рис. 5) ошибка снижена до ±0,5%.

Как?

Как обсуждалось выше, данная схема преобразует ток в напряжение. Это может удовлетворить ваши требования к мониторингу тока, если всё, что вам нужно сделать, – это вручную наблюдать за потреблением тока с помощью мультиметра или осциллографа. Я полагаю, вы могли бы даже записывать и анализировать свои измерения потребления тока с помощью устройства сбора данных и некоторого соответствующего программного обеспечения.

Если вам нужна более автономная схема в смысле возможности записывать и/или реагировать на потребление тока, вы, вероятно, захотите оцифровать измерения с помощью микроконтроллера. Если требуется только базовый функционал, и у вас нет других потребностей в процессоре, вы можете использовать компаратор или аналоговый детектор диапазона пороговых напряжений.

Виды исполнения

Измерители «дитца» подразделяются на аналоговые и цифровые:

Аналоговые измерители. Как правило способны измерять только переменный ток, показания в них снимаются со встроенного амперметра. Такие приборы были широко распространены до появления цифровых измерителей.

Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

Цифровые (самые популярные). Внутри таких приборов установлена интегральная схема, как правило они обладают расширенным функционалом или дополнительными функциями мультиметра (тестера).

Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

Специализированные высоковольтные электроизмерительные клещи

В отдельный вид следует выделить измерители специального назначения, измерительные клещи Ц 90 (более современный вариант Ц 4502), предназначенные для измерения силы тока в мощных электроустановках до 10 000 вольт. С помощью этого инструмента можно измерить только силу переменного тока от 15 до 600А. Принцип действия измерителя аналогичен с обычными измерителями трансформаторного типа, конструкция таких клещей немного видоизменена для безопасной работы оператора. В конструкции предусмотрены изолирующая часть с изолирующими рукоятками, а также разработаны правила безопасности при проведении измерений данным способом.

Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

«В настоящее время с развитием технологий такой способ измерения практически не применяется из-за высокого риска поражения электрическим током.»

Термонаклейки

Помогут в этом деле специальные термонаклейки или термостикеры. Сами производители их в шутку называют “умная изолента”.Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

Некоторые опытные электрики уже давно применяют такой “дедовский” способ, как наклеивание тонкой полоски обычной изоленты на металл наконечника. И делается это вовсе не в целях дополнительной изоляции.

По степени оплавления изоленты можно косвенно судить о том, грелся контакт или нет.

Взяв в основу этот нехитрый способ, разработчики его усовершенствовали и пошли еще дальше.

Данные термонаклейки выступают в роли контактного термоиндикатора. Они представляют из себя самоклеющуюся ПВХ ленту.Измеритель-фиксатор тока в широком диапазоне, напряжения и температуры

Выпускается целый набор таких стикеров, рассчитанных на разные значения пороговых температур.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: