Синхронный выпрямитель своими руками

Полноволновой полууправляемый мостовой выпрямитель

Двухполупериодное выпрямление имеет много преимуществ по сравнению с более простым полуволновым выпрямителем, например, выходное напряжение более согласовано, имеет более высокое среднее выходное напряжение, входная частота удваивается в процессе выпрямления и требует меньшего значения емкости сглаживающего конденсатора, если таковой требуется. Но мы можем улучшить конструкцию мостового выпрямителя, используя тиристоры вместо диодов в его конструкции.

Заменив диоды внутри однофазного мостового выпрямителя тиристорами, мы можем создать фазо-управляемый выпрямитель переменного тока в постоянный для преобразования постоянного напряжения питания переменного тока в контролируемое выходное напряжение постоянного тока. Фазоуправляемые выпрямители, полууправляемые или полностью управляемые, имеют множество применений в источниках питания переменного тока и в управлении двигателями.

Однофазный мостовой выпрямитель — это то, что называется «неуправляемым выпрямителем» в том смысле, что приложенное входное напряжение передается непосредственно на выходные клеммы, обеспечивая фиксированное среднее значение эквивалентного значения постоянного тока. Чтобы преобразовать неуправляемый мостовой выпрямитель в однофазную полууправляемую выпрямительную цепь, нам просто нужно заменить два диода тиристорами (SCR), как показано на рисунке.

Синхронный выпрямитель своими руками

В конфигурации с полууправляемым выпрямителем среднее напряжение нагрузки постоянного тока контролируется с использованием двух тиристоров и двух диодов. Как мы узнали из нашего урока о тиристорах, тиристор будет проводить (состояние «ВКЛ») только тогда, когда его анод (A) более положительный, чем его катод (K) и импульс запуска подается на его затвор (G). В противном случае он остается неактивным.

Таким образом, задерживая импульс запуска, подаваемый на клемму затвора тиристоров, на контролируемый период времени или угол ( α ) после того, как напряжение питания переменного тока прошло пересечение нулевого напряжения между анодным и катодным напряжением, мы можем контролировать, когда тиристор начинает проводить ток и, следовательно, контролировать среднее выходное напряжение.

Синхронный выпрямитель своими руками

Во время положительного полупериода входного сигнала ток течет по пути: SCR 1 и D 2 и обратно к источнику питания. Во время отрицательного полупериода V INпроводимость проходит через SCR 2 и D 1 и возвращается к источнику питания.

Понятно, что один тиристор из верхней группы ( SCR 1 или SCR 2 ) и соответствующий ему диод из нижней группы ( D 2 или D 1 ) должны проводить вместе, чтобы протекать ток любой нагрузки.

Таким образом, среднее выходное напряжение V AVE зависит от угла включения α для двух тиристоров, включенных в полууправляемый выпрямитель, поскольку два диода неуправляются и пропускают ток всякий раз, когда смещено вперед. Таким образом, для любого угла срабатывания затвора α среднее выходное напряжение определяется как:

Синхронный выпрямитель своими руками

Обратите внимание, что максимальное среднее выходное напряжение возникает, когда α = 1, но все еще равно 0,637 * V MAX, как для однофазного неуправляемого мостового выпрямителя. Мы можем использовать эту идею для контроля среднего выходного напряжения моста на один шаг вперед, заменив все четыре диода тиристорами, что дает нам полностью управляемую схему мостового выпрямителя 

Мы можем использовать эту идею для контроля среднего выходного напряжения моста на один шаг вперед, заменив все четыре диода тиристорами, что дает нам полностью управляемую схему мостового выпрямителя .

Микросварочник

Если сфера применения ограничена спайкой медных проводов (например, при монтаже распределительных коробок), можно ограничиться конструкцией размером с пару спичечных коробков.

Выполняется на транзисторе КТ835 (837). Трансформатор изготавливается самостоятельно. Фактически — это высокочастотный повышающий преобразователь.

Трансформатор мотаем на ферритовом стержне. Две первичные обмотки: коллекторная (20 витком 1 мм), базовая (5 витков 0.5 мм). Вторичная (повышающая) обмотка — 500 витков 0.15 проволоки.

Синхронный выпрямитель своими руками

Собираем схему, припаиваем по схеме резисторную обвязку (чтобы трансформатор не перегревался на холостом ходу), аппарат готов. Питание от 12 до 24 вольт, с помощью такого аппарата можно сваривать жгуты проводов, резать тонкую сталь, соединять металлы толщиной до 1 мм.

Синхронный выпрямитель своими руками

В качестве сварочных электродов можно использовать толстую швейную иглу.

Классификация по назначению и устройству

Генератор тока переменного

Выпрямители переменного тока разделяют на несколько различных видов, в зависимости от характеристик, использования периодов переменного тока, схем, по количеству фаз и типу пропускающего элемента. В общем виде классификация имеет следующий вид:

  • По количеству периодов, задействованных в работе (одно,- и двухполупериодные, а также с полным и неполным использованием волны);
  • По типажу устройства делят на включающие электронный мост, умножающие напряжение, с наличием или отсутствием трансформаторов;
  • По количеству фаз разделяют на однофазные, двух, трех,- и N-фазные;
  • Согласно типу устройства, пропускающего синусоиду, делят на полупроводниковые диодные и тиристорные, механические и вакуумные, ртутные;
  • По виду пропускаемой волны делят на импульсные, аналоговые и цифровые.

Какие бывают выпрямители

Построение устройств, выпрямляющих переменный ток, базируется на функции итогового агрегата. При необходимости только выравнивать колебания сборка на печатных платах производится за счет неуправляемых полупроводниковых элементов – диодов. Таким образом строятся простейшие выравнивающие элементы.

При необходимости изменений уровня мощности, которая передается на принимающее оборудование, устройство собирают с использованием контролируемых вентилей (тиристоров). Такие выпрямители тока требуются для работы некоторых двигателей, работающих за счет электричества. За счет регулировки подаваемого напряжения изменяется скорость вращения ротора.

N-фазные выпрямители

В подобных устройствах насчитывают более 3 фаз для выпрямления тока. Другие конструктивные особенности различаются. Многофазный выпрямитель может состоять как из полноценного моста, так и из четверти и половины. По количеству входов и распараллеливанию их делят на раздельные, объединенные звездами или кольцами. Кроме того, существуют последовательные виды.

Контроллеры синхронного выпрямления от International Rectifier

International Rectifier выпускает семейство синхронных преобразователей IR116x. Контроллеры этого семейства (таблица 1) выпускаются в корпусе SO-8 и способны работать при питающем напряжении до 20 В. Частота коммутации в данных микросхемах составляет 500 кГц (400 кГц для IR11682SPBF), а коммутируемое внешним транзистором напряжение может достигать 200 В. Все микросхемы (за исключением IR1168/82) имеют программируемый внешним резистором минимальный коэффициент заполнения, который характеризуется минимальным временем во включенном состоянии (MOT — Minimum On Time).

Таблица 1. Контроллеры синхронного выпрямления семейства IR116x   

Наименование Корпус Макс. напряжение питания, В Макс. коммутируемое напряжение, В Частота коммутации макс, кГц Ток затвора, A Напряжение затвора, В Мин. время во включенном состоянии (MOT), нс Вход разрешения Число каналов Автомат. защита по MOT
IR1166SPBF SO-8   20   200   500   1 / -4   10,7   Програм. 250…3000   есть   1   —  
IR1167ASPBF 2 / -7   10,7   есть   —  
IR1167BSPBF 2 / -7   14,5   есть   —  
IR1168SPBF 1 / -4   10,7   750   —   2   —  
IR11662SPBF 1 / -4   10,7   Програм. 250…3000   есть   1   есть  
IR11672ASPBF 2 / -7   10,7   есть   есть  
IR11682SPBF 400   1 / -4   10,7   850   —   2   есть  
IR1169SPBF 500   1 / -4   10,7   Програм. 250…3000   есть   1   есть  
Популярные статьи  Арбалет из подручных материалов

Представители семейства покрывают диапазон выходных мощностей вплоть до 500 Вт (рисунок 3). В устройствах с небольшой мощностью применяют обратноходовую топологию. Для повышенных мощностей используют резонансную полумостовую схему с синхронным выпрямлением. Микросхемы IR1168 позволяют наиболее просто строить резонансный полумостовой преобразователь, так как для этого требуется всего одна такая микросхема. Контроллер IR1169 способен также работать в прямоходовой схеме.

Синхронный выпрямитель своими руками

Рис. 3. Применение синхронных преобразователей от International Rectifier

Однофазные выпрямители

Основными схемами однофазных выпрямителей являются однополупериодная и двухполупериодная (мостовая или со средней точкой).

Однофазная однополупериодная схема является самой простейшей схемой выпрямителя.

Синхронный выпрямитель своими руками

Трансформатор преобразовывает сетевое напряжение первичной обмотки Uc в напряжение вторичной обмотки U2. Так как диод Д имеет одностороннюю проводимость, ток I2 будет протекать только при положительной полуволне вторичного напряжения, при отрицательной полуволне диод будет закрыт. Так как ток в нагрузке Rн протекает только в один полупериод, отсюда и название выпрямителя — однополупериодный.

К недостаткам однополупериодных выпрямителей следует отнести униполярный ток, который, проходя через вторичную обмотку, намагничивает сердечник трансформатора, изменяя его характеристики и уменьшая КПД, высокий уровень пульсаций и большое обратное напряжение на диоде.

Двухполупериодные схемы выпрямления уже значительно интересней. Из них наибольшую популярность приобрела мостовая схема включения диодов.

Схема состоит из трансформатора и четырех диодов,собранных мостом. Одна из диагоналей моста соединена с выводами вторичной обмотки трансформатора, вторая диагональ с нагрузкой. При положительном потенциале в точке a вторичной обмотки трансформатора ток пойдет по цепи точка a вторичной обмотки — A — диод Д1 — B — нагрузка Rн — D — диод Д3. К диодам Д2 и Д4 при этом приложено обратное напряжение, они заперты. При изменении направления Э.Д.С и тока во вторичной обмотке положительный потенциал появится уже в точке b вторичной обмотки трансформатора. Ток при этом пойдет по цепи b — C — диод Д2 — B — нагрузка Rн — D — диод Д4.

Таким образом ток в нагрузке не меняет своего направления. Кривые напряжения и тока на нагрузке повторяют (при прямом напряжении на диодах U np ≈ 0) по величине и форме выпрямленные полуволны напряжения и тока вторичной обмотки трансформатора. Они пульсируют от нуля до максимального значения.

Кроме мостовой схемы выпрямления может применяться двунаправленная схема.

Схема состоит из трансформатора со средней отпайкой на вторичной обмотке и двух диодов. Когда в точке a имеется положительный потенциал ток протекает по цепи a — диод Д1 — нагрузка Rн — отпайка вторичной обмотки. При положительном потенциале в точке b вторичной обмотки ток потечет по цепи b — диод Д2 — с — нагрузка Rн — отпайка вторичной обмотки.

Синхронный выпрямитель своими руками

На левом рисунке показана зависимость напряжения вторичной обмотки трансформатора от времени, на правом изменение тока нагрузки. Как следует из работы выпрямителя, направление тока в нагрузке неизменно. Вторичная обмотка трансформатора двухфазная и каждая фаза работает половину периода. Напряжение на нагрузке в любой момент равно мгновенному значению ЭДС фазы, работающей в данный момент.

К основным минусам данной схемы можно отнести необходимость делать отпайку вторичной обмотки трансформатора и большое обратное напряжение диода Uобр = 2U2м = 3,14U0, поэтому она не получила столь широкого распространения как мостовая схема.

Трехфазные выпрямители

Среди трехфазных схем наибольшее распространение получили однонаправленная схема выпрямления или схема Миткевича и мостовая схема, известная также как схема Ларионова.

Рассмотрим сначала однонаправленную схему выпрямителя.

Синхронный выпрямитель своими руками

В однонаправленной схеме вторичные обмотки трехфазного трансформатора соединены звездой. К фазам а, b и с подключены диоды Д1, Д2 и Д3, катоды которых соединены в точке . Нагрузка Rн подключена между общим выводом трех вторичных обмоток трансформатора и общей точкой присоединения катодов.

Ток на каждом диоде будет протекать только тогда, когда потенциал на аноде будет выше потенциала на катоде. Это возможно в течении 1/3 периода, когда напряжение в данной фазе выше напряжений в двух других фазах. То есть когда U2а>U2b и U2a>U2c, диод Д1 будет открыт, в то время как Д2 и Д3 будут заперты. Под действием напряжения U2а ток замыкается через обмотку фазы а, диод Д1 и нагрузку Rн. В следующую треть периода открывается диод Д2, затем Д3 и т.д.

Напряжение нагрузки будет равно напряжению фазы с открытым диодом и следовательно ток нагрузки изменяется по тому же закону. При этом ток в нагрузке всегда будет больше 0.

Пульсация тока в такой схеме будет относительно невелика, что понижает требования к сглаживающему фильтру. Недостатком данной схемы, также как однофазной однополупериодной является намагничивание сердечника трансформатора.

Большее распространение в трехфазных выпрямителях получила мостовая схема Ларионова, так как она лишена недостатков однотактной схемы.

В такой схеме одновременно пропускают ток два диода — один с наибольшим положительным потенциалом анода относительно нулевой точки трансформатора из катодной группы диодов, другой — с наибольшим отрицательным потенциалом катода. Нагрузка подключается между анодной и катодной группой диодов.

Синхронный выпрямитель своими руками

В интервал времени t1-t2 пропускать ток будут диоды Д1 и Д4, так как наибольший положительный потенциал имеет анод фазы а, а наибольшим отрицательным потенциалом обладает катод фазы b. В интервале t2-t3 пропускать ток будут диоды Д1-Д6, в интервале t3-t4 — Д3-Д6, в интервале t4-t5 — Д3-Д2, в интервале t5-t6 — Д5-Д2 и в последнем интервале — Д5-Д4.

Таким образом напряжение на нагрузке будет иметь вид шести пульсаций за период, а интервал проводимости каждого диода — 2π/3. При этом интервал совместной работы двух диодов — π/6. Среднее значение напряжения на нагрузке будет:

  где U2 — действующее значение напряжения на вторичных обмотках трансформатора.

Среднее значение выпрямленного напряжения практически равно максимальному линейному напряжению питающей сети:

где Uab.m — максимальное линейное напряжение вторичной обмотки.

Из достоинств схемы нужно отметить то, что в такой схеме отсутствует вынужденное подмагничивание сердечника трансформатора. Кроме того коэффициент пульсаций значительно ниже, чем у однофазной двухполупериодной схемы и составляет 0,057.

На основе этой схемы можно создать двенадцати, восемьнадцати, двадцатичетырехфазные выпрямители. Для этого используются различные сочетания последовательного и параллельного соединения схем. Чем больше будет фаз и соответственно пар диодов, тем меньше будут выходные пульсации.

Кроме этих схем, могут применяться и управляемые схемы выпрямления, которые наряду с выпрямлением переменного тока обеспечивают и регулировку выходного напряжения (тока). Но об этом мы поговорим в следующий раз.

Полуволновое выпрямление

Синхронный выпрямитель своими руками

Приведенная выше конфигурация однофазного полуволнового выпрямителя пропускает положительную половину формы сигнала переменного тока, причем отрицательная половина исключается. Меняя направление диода, мы можем пропустить отрицательные половины и устранить положительные половины формы сигнала переменного тока. Поэтому на выходе будет серия положительных или отрицательных импульсов.

Таким образом, на подключенную нагрузку не подается напряжение или ток, R L в течение половины каждого цикла. Другими словами, напряжение на сопротивлении нагрузки R L состоит только из половины сигналов, либо положительных, либо отрицательных, поскольку оно работает только в течение половины входного цикла, отсюда и название полуволнового выпрямителя.

Надеемся, что мы видим, что диод позволяет току течь в одном направлении, создавая только выход, который состоит из полупериодов. Эта пульсирующая форма выходного сигнала не только изменяется ВКЛ и ВЫКЛ каждый цикл, но присутствует только в 50% случаев, и при чисто резистивной нагрузке это содержание пульсации высокого напряжения и тока является максимальным.

Популярные статьи  Новогодние украшения своими руками

Этот пульсирующий постоянный ток означает, что эквивалентное значение постоянного тока падает на нагрузочном резисторе, поэтому R L составляет только половину среднего значения синусоидальных сигналов. Поскольку максимальное значение синусоидальной формы сигнала равно 1 (sin (90 o )), среднее значение постоянного тока, полученное для половины синусоиды, определяется как: 0,637 x максимальное значение амплитуды.

Таким образом, во время положительного полупериода A AVE составляет 0,637 * A MAX . Однако, поскольку отрицательные полупериоды удалены из-за выпрямления диодом, среднее значение в течение этого периода будет нулевым.

Среднее значение синусоиды

Синхронный выпрямитель своими руками

Таким образом, для полуволнового выпрямителя в 50% случаев среднее значение составляет 0,637 * A MAX, а в 50% случаев — ноль. Если максимальная амплитуда равна 1, среднее значение или эквивалент значения постоянного тока, видимый по сопротивлению нагрузки, R L будет:

Синхронный выпрямитель своими руками

Таким образом, соответствующие выражения для среднего значения напряжения или тока для полуволнового выпрямителя задаются как:

V AVE  = 0,318 * V MAX

I AVE  = 0,318 * I MAX

Обратите внимание, что максимальное значение A MAX — это значение входного сигнала, но мы также могли бы использовать его среднеквадратичное значение или среднеквадратичное значение, чтобы найти эквивалентное выходное значение постоянного тока однофазного полуволнового выпрямителя. Чтобы определить среднее напряжение для полуволнового выпрямителя, мы умножаем среднеквадратичное значение на 0,9 (форм-фактор) и делим произведение на 2, то есть умножаем его на 0,45, получая:

V AVE  = 0,45 * V RMS

I AVE  = 0,45 * I RMS

Затем мы можем видеть, что схема полуволнового выпрямителя преобразует либо положительные, либо отрицательные половины формы сигнала переменного тока в импульсный выход постоянного тока, который имеет значение 0,318 * A MAX или 0,45 * A RMS, как показано.

Синхронный выпрямитель своими руками

Схема диодного моста

Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.

Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.

Например, в составе блока питания, о котором уже заходила речь на страницах сайта, присутствует однофазный полномостовый выпрямитель – диодный мост. На принципиальной схеме диодный мост изображается следующим образом.

Схема диодного моста

Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей, которые активно применяются в электронике. С его помощью производят двухполупериодное выпрямление переменного тока.

В железе это выглядит следующим образом.

Диодный мост из отдельных диодов S1J37

Схему эту придумал немецкий физик Лео Гретц, поэтому данное схемотехническое решение иногда называют «схема Гретца» или «мост Гретца». В электронике данная схема применяется в настоящее время повсеместно. С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Сейчас ею уже никого не удивишь, но в эпоху радиоламп «мост Гретца» игнорировали, поскольку она требовала применения аж 4 ламповых диодов, которые стоили по тем временам довольно дорого.

Расчет мостовой схемы выпрямления

Заданными или известными величинами являются напряжение на нагрузке (Uср.зад, ток через нагрузку Iср, коэффициент пульсации выпрямленного напряжения Kп.зад на выходе, напряжение и частота питающей сети.

Расчетные величины определяются по формулам:

Из справочника выбирается вентиль с допустимым обратным напряжением

Uобр ≥ 1,6Uср.р

и током через вентиль

I’ср ≥ 0,6Iср

Далее рассчитываются электрические величины, характеризующие вторичную обмотку трансформатора:

UII=(1,1÷1,3)Uср.р III = 0,8Iср; PII=UIIIII

С целью получения пологой внешней характеристики, желательно выбирать фильтр, начинающийся с индуктивности.

Коэффициент пульсаций напряжения на входе фильтра

Кп.вх = 0,67.

Коэффициент сглаживания

При токе нагрузки до 200 ма величина емкости звена фильтра не превышает 8—12 мкф. Задавшись емкостью звена фильтра Сф, можно определить индуктивность дросселя фильтра

(208)

Емкость конденсатора C1, шунтирующего дроссель, рассчитывается по формуле

(209)

Конденсатор С1 должен быть рассчитан на рабочее напряжение

Uраб = 4πƒLдрIср

В заключение нужно определить расчетную (габаритную) мощность силового трансформатора, используя формулу

Пайка блоков питания

Во время ремонта ИБП возникает необходимость проверки элементов. Для этого необходимо выпаять соответствующий элемент с печатной платы

Пайку важно производить аккуратно, используя паяльник требуемой мощности: 

  • от 80 Ватт – для ремонта силовых элементов: трансформатор, силовые транзисторы, выходные диоды, диодный мост, сглаживающие конденсаторы; 
  • до 60 Ватт (или термовоздушную паяльную станцию) – для ремонта компонентов малой и средней мощности. 

Если ИБП работал с нарушением температурных режимов (перегревался), то при удалении компаунда возможен отрыв SMD компонентов с печатной платы

Важно помнить про это, а при дальнейшем ремонте восстановить обвязку на плату

При ремонте ИБП используется сплав Розе, для уменьшения температуры заводского припоя и исключения повреждения подводящих проводников. 

При монтаже необходимо припаивать на:

  • паяльную пасту с температурой плавления 183 градуса Цельсия – элементы малой мощности
  • ПОС 61-63 (Pb 61-63/ Sn 40) – силовые электронные компоненты.

После ремонта, перед проведением измерений на транзисторах, важно понизить температуру ИБП, так как в нагретом состоянии, ключи открыты. Перед пайкой вновь устанавливаемых компонентов (транзисторов) их выводы нужно зачистить и залудить

Перед пайкой вновь устанавливаемых компонентов (транзисторов) их выводы нужно зачистить и залудить.

После пайки, необходимо отмыть спиртом или другим очистителем те места где выполнялась пайка.

Как работает ИБП

Итак, импульсный блок питания APW7 работает по следующему принципу:

  1. Схема защиты от превышения напряжения и короткого замыкания. Схема состоит из варистора и предохранителя в термоусадочной трубке. При превышении напряжения свыше 350 V срабатывает варистор (пробивается), предохранитель перегорает, защищая плату ИБП от повышенного напряжения. В таком случае, ремонт состоит из замены предохранителя.
  2. Следующий блок – это схема сетевого фильтра. В нее входит конденсатор два дросселя, еще один конденсатор и ряд блокировочных конденсаторов предназначенных для устранения сетевых помех и выбросов помех от блока питания в сеть. При незначительных скачках напряжения дроссель старается увеличить свое магнитное поле, в результате этого все повышенное напряжение поступающее из сети скачкообразно гасится на нем. Конденсаторы сглаживают выбросы от работы импульсного преобразователя и препятствуют проникновению в сеть.
  3. После сетевого фильтра стоят терморезисторы с отрицательным сопротивлением (NTC), которые работают на уменьшение сопротивления при нагреве. Это необходимо для ограничения тока через диодный мост в первоначальный момент зарядки конденсаторов сглаживающего фильтра, стоящих после диодного моста.
  4. Затем идет выпрямительный диодный мост, на нем получаем из переменного постоянное напряжение. Это напряжение на начальном этапе сглаживается фильтрующими конденсаторами большой емкости 470 мкФ на 450 V каждый. В этот момент времени на конденсаторах появляется напряжение порядка 315 V. 
  5. Так как у ИБП кроме активной мощности существует реактивная, что отрицательно сказывается для работы. Конструктивно это устраняется за счет схемы PFC (Power Factor Correction) – Коррекция фактора мощности. В данном ИБП она сконструирована на задающей микросхеме импульсов и полевого транзистора. Перед транзистором установлен мощный дроссель высокой индуктивности. В результате работы данной схемы, напряжение на конденсаторах фильтра возрастает до 390 Вольт и оно теперь является основным для питания схем преобразователя постоянного тока.
  6. Для работы ШИМ контроллера необходимо использовать постоянное напряжение +12 Вольт. Это напряжение формируется на вспомогательном трансформаторе и выпрямляется диодами. Также данное напряжение необходимо для питания системы охлаждения (вентилятора).
  7. От 12 Вольт вспомогательного источника питается схема ШИМ-контроллера, которая формирует импульсы для преобразователя постоянного тока, состоящего из силового трансформатора и двух полевых транзисторов. Импульсы подаются от ШИМ контроллера на задающий генератор. А уже с задающего генератора импульсы поступают на затворы транзисторов которые управляют силовым трансформатором.
  8. Импульсное напряжение полученное на вторичной обмотке трансформатора , за счет работы однотактного прямого преобразователя, поступает на схему синхронного выпрямителя. Где напряжение сглаживается синхронным фильтром построенным на конденсаторах и поступает на выходные клеммы для питания хешплат. Обратная связь и стабилизация напряжения осуществляется через схему ШИМ контроллера.
  9. Синхронный выпрямитель управляется от схемы формирователя постоянного тока.
Популярные статьи  Цветы из полимерной глины: пошаговые мастер-классы для начинающих, фото идеи и советы

Структура и особенности

Выпрямители это электротехнические устройства, которые служат для получения из переменного напряжения, постоянного. Главными компонентами выпрямителей являются вентили и трансформатор. Они создают условия протекания тока в нагрузочной цепи в одну сторону, то есть, выпрямляют его. Из переменного напряжения образуется постоянное с наличием пульсаций.

Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.

Выпрямителем называется электронное устройство, предназначенное для преобразования электрической энергии переменного тока в постоянный. В основе выпрямителей лежат полупроводниковые приборы с односторонней проводимостью – диоды и тиристоры.

Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя. Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей. Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.

Синхронный выпрямитель своими руками Стабилизатор напряжения

Электрические параметры

У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

  • Iобр – постоянный обратный ток, мкА;
  • Uпр – постоянное прямое напряжение, В;
  • Iпр max – максимально допустимый прямой ток, А;
  • Uобр max – максимально допустимое обратное напряжение, В;
  • Р max – максимально допустимая мощность, рассеиваемая на диоде;
  • Рабочая частота, кГц;
  • Рабочая температура, С.

Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Схема простого выпрямителя переменного тока на одном диоде

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (Rн), а функцию выпрямляющего элемента будет выполнять диод (VD). При положительных полупериодах напряжения, поступающих на анод диода диод открывается.

В эти моменты времени через диод, а значит, и через нагрузку (Rн), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом). При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

В итоге получается, что через нагрузку (Rн), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока. Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.

Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным. Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости. Заряжаясь импульсами тока во время положительных полупериодов, конденсатор (Cф) во время отрицательных полупериодов разряжается через нагрузку (Rн)

. Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке (Rн) будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Синхронный выпрямитель своими руками Силовой выпрямительный диод Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим. В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.

Применение на практике

Для примера, рассмотрим инверторный аппарат TELWIN Force 165. Во входном выпрямителе используются диодные сборки GBPC3508. Выпрямительный мост GBPC3508 может работать с током 35 А, обратное напряжение – 800 В.

С ним вместе идет обязательно сглаживающий фильтр из конденсаторов большой емкости. Кроме этого имеется фильтр электромагнитной совместимости, который не пропускает помехи от инвертора в бытовую сеть.

На выходе инвертора используются мощные сдвоенные диоды с общим катодом. Они имеют высокое быстродействие в отличие от диодов расположенных на входе устройства.

Благодаря малому времени восстановления, менее 50 наносекунд, приборы успевают переключать высокочастотный ток на выходе вторичной обмотки.

В данном приборе используются сдвоенные диоды марок STTH6003CW, FFH30US30DN или VS-60CPH03, рассчитаны на прямой ток 30 ампер на один прибор (60 ампер на оба) и обратное напряжение 300 вольт.

Устанавливаются на радиатор. Для защиты полупроводников от перегрузки используется RC фильтр. Схема управления требует стабильный источник питания без бросков напряжения.

Для этого в приборе предусмотрены стабилитроны или уже готовый интегральный стабилизатор, которые обеспечивают стабильное питание на микросхемах управления. В результате получается компактное устройство, позволяющее качественно варить металл.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: