Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET

Содержание

Обозначение тиристоров и операционных усилителей показано на рисунке. Задача 3.

Провести анализ работы каждой электрической цепи электросхемы, выявить на ней основные и вспомогательные аппараты, определить условия их работы, при необходимости ознакомиться с технической документацией на электрические приборы. Кроме того, аналоговые ключи характеризуются такими параметрами, как предельно допустимые режимы, напряжения питания, потребляемая мощность, диапазон рабочих температур, размеры, тип корпуса и т. Согласованный режим Он используется для обеспечения максимальной передачи активной мощности, которая идет от источника питания к потребляемому энергию.

Перечень компонентов цепи может быть довольно большим.

Первую используют как в статическом режиме, так и при медленно изменяющихся процессах. Кроме того, такие устройства, как правило, имеют два устойчивых квазиустойчивых состояния , в течение которых в схеме наблюдаются только медленно изменяющиеся процессы, что позволяет рассчитывать и анализировать эти устройства по статическим схемам замещения, составными элементами которых являются статические эквивалентные схемы приборов.

Стрелка в кружке указывает положительное направление тока источника. Согласованный режим Он используется для обеспечения максимальной передачи активной мощности, которая идет от источника питания к потребляемому энергию. Существуют два основных способа соединения источников питания: последовательное и параллельное. В бытовой сети мы имеем напряжение вольт с определенными нормированными отклонениями.

Элементы схемы электрической цепи в данном случае не используются. Не все контуры считаются электрическими цепями. Обозначение транзисторов на схеме Электрическая схема транзисторов — элементов электрической системы способных управлять током в выходной цепи при воздействий входного сигнала, показана на рисунке. Закон Ома для полной цепи Он определяет зависимость, которая устанавливается между ЭДС Е источника питания, у которого внутреннее сопротивление равно r, током и общим эквивалентом R.

Содержание

Обозначение тиристоров и операционных усилителей показано на рисунке. Задача 3.

Провести анализ работы каждой электрической цепи электросхемы, выявить на ней основные и вспомогательные аппараты, определить условия их работы, при необходимости ознакомиться с технической документацией на электрические приборы. Кроме того, аналоговые ключи характеризуются такими параметрами, как предельно допустимые режимы, напряжения питания, потребляемая мощность, диапазон рабочих температур, размеры, тип корпуса и т. Согласованный режим Он используется для обеспечения максимальной передачи активной мощности, которая идет от источника питания к потребляемому энергию.

Перечень компонентов цепи может быть довольно большим.

Первую используют как в статическом режиме, так и при медленно изменяющихся процессах. Кроме того, такие устройства, как правило, имеют два устойчивых квазиустойчивых состояния , в течение которых в схеме наблюдаются только медленно изменяющиеся процессы, что позволяет рассчитывать и анализировать эти устройства по статическим схемам замещения, составными элементами которых являются статические эквивалентные схемы приборов.

Стрелка в кружке указывает положительное направление тока источника. Согласованный режим Он используется для обеспечения максимальной передачи активной мощности, которая идет от источника питания к потребляемому энергию. Существуют два основных способа соединения источников питания: последовательное и параллельное. В бытовой сети мы имеем напряжение вольт с определенными нормированными отклонениями.

Элементы схемы электрической цепи в данном случае не используются. Не все контуры считаются электрическими цепями. Обозначение транзисторов на схеме Электрическая схема транзисторов — элементов электрической системы способных управлять током в выходной цепи при воздействий входного сигнала, показана на рисунке. Закон Ома для полной цепи Он определяет зависимость, которая устанавливается между ЭДС Е источника питания, у которого внутреннее сопротивление равно r, током и общим эквивалентом R.

Коммутация нагрузки

Простыми схемами на транзисторных ключах можно производить коммутацию токов в интервале 0,15… 14 А, напряжений 50… 500 В. Все зависит от конкретного типа транзистора. Ключ может производить коммутацию нагрузки 5-7 кВт при помощи управляющего сигнала, мощность которого не превышает сотни милливатт.

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET

Можно применять вместо транзисторных ключей простые электромагнитные реле. У них имеется достоинство – при работе не происходит нагрев. Но вот частота циклов включения и отключения ограничена, поэтому использовать в инверторах или импульсных блоках питания для создания синусоиды их нельзя. Но в общем принцип действия ключа на полупроводниковом транзисторе и электромагнитного реле одинаков.

Работа с микроконтроллерами

При расчете транзисторного ключа нужно учитывать все особенности работы элемента. Для того чтобы работала система управления на микроконтроллере, используются усилительные каскады на транзисторах. Проблема в том, что выходной сигнал у контроллера очень слабый, его не хватит для того, чтобы включить питание на обмотку электромагнитного реле (или же открыть переход очень мощного силового ключа). Лучше применить биполярный транзисторный ключ, которым произвести управление MOSFET-элементом.

Применяются несложные конструкции, состоящие из таких элементов:

  1. Биполярный транзистор.
  2. Резистор для ограничения входного тока.
  3. Полупроводниковый диод.
  4. Электромагнитное реле.
  5. Источник питания 12 вольт.

Диод устанавливается параллельно обмотке реле, он необходим для того, чтобы предотвратить пробой транзистора импульсом с высоким ЭДС, который появляется в момент отключения обмотки.

Сигнал управления вырабатывается микроконтроллером, поступает на базу транзистора и усиливается. При этом происходит подача питания на обмотку электромагнитного реле – канал «коллектор — эмиттер» открывается. При замыкании силовых контактов происходит включение нагрузки. Управление транзисторным ключом происходит в полностью автоматическом режиме – участие человека практически не требуется. Главное – правильно запрограммировать микроконтроллер и подключить к нему датчики, кнопки, исполнительные устройства.

Применение полевых транзисторов

Время на чтение:

Для того чтобы быстро изменить силу тока в усилительных схемах, лампочках или электрических двигателях применяют транзисторы. Они умеют ограничивать силу тока плавно и постепенно или специальным методом «импульс-пауза». Второй способ особо часто используется при широтно-импульсной модуляции и управления. Если используется мощный источник тока, то транзистор проводит его через себя и регулирует параметр слабым значением. Если тока маловато, то используют сразу несколько транзисторов, обладающих большей чувствительностью. Соединять в таком случае их нужно каскадным образом. В этой статье будет рассмотрено, как открыть полевой транзистор, какой принцип работы полевого транзистора для чайников и какие обозначения выводов полевой транзистор имеет.

Использование транзисторов в конструкциях

Нужно изучать все требования к полупроводникам, которые собираетесь использовать в конструкции

Если планируете проводить управление обмоткой электромагнитного реле, то нужно обращать внимание на его мощность. Если она высокая, то использовать миниатюрные транзисторы типа КТ315 вряд ли получится: они не смогут обеспечить ток, необходимый для питания обмотки

Поэтому рекомендуется в силовой технике применять мощные полевые транзисторы или сборки. Ток на входе у них очень маленький, зато коэффициент усиления большой.

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET

Не стоит применять для коммутации слабых нагрузок мощные реле: это неразумно. Обязательно используйте качественные источники питания, старайтесь напряжение выбирать таким, чтобы реле работало в нормальном режиме. Если напряжение окажется слишком низким, то контакты не притянутся и не произойдет включение: величина магнитного поля окажется маленькой. Но если применить источник с большим напряжением, обмотка начнет греться, а может и вовсе выйти из строя.

Популярные статьи  Розы из ткани

Обязательно используйте в качестве буферов транзисторы малой и средней мощности при работе с микроконтроллерами, если необходимо включать мощные нагрузки. В качестве силовых устройств лучше применять MOSFET-элементы. Схема подключения к микроконтроллеру такая же, как и у биполярного элемента, но имеются небольшие отличия. Работа транзисторного ключа с использованием MOSFET-транзисторов происходит так же, как и на биполярных: сопротивление перехода может изменяться плавно, переводя элемент из открытого состояния в закрытое и обратно.

Откуда пошло название “МОП”

Если “разрезать” МОП-транзистор, то можно увидеть вот такую картину.

С точки зрения еды на вашем столе, МОП-транзистор будет больше похож на бутерброд. Полупроводник P-типа – толстый кусок хлеба, диэлектрик – тонкий слой колбасы, слой металла – тонкая пластинку сыра. В результате у нас получается вот такой бутерброд.

А как будет строение транзистора сверху-вниз? Сыр – металлическая пластинка, колбаса – диэлектрик, хлеб – полупроводник. Следовательно, получаем Металл-Диэлектрик-Полупроводник. А если взять первые буквы с каждого названия, то получается МДП – Металл-Диэлектрик-Полупроводник, не так ли? Значит, такой транзистор можно назвать по первым буквам МДП-транзистором. А так как в качестве диэлектрика используется очень тонкий слой оксида кремния (SiO2), можно сказать почти стекло, то и вместо названия “диэлектрик” взяли название “оксид, окисел”, и получилось Металл-Окисел-Полупроводник, сокращенно МОП. Ну вот, теперь все встало на свои места).

Далее по тексту МОП-транзистор условимся называть просто полевой транзистор. Так будет проще.

Симисторный ключ

Для гальванической развязки цепей управления и питания лучше
использовать оптопару или специальный симисторный драйвер. Например,
MOC3023M или MOC3052.

Эти оптопары состоят из инфракрасного светодиода и фотосимистора. Этот
фотосимистор можно использовать для управления мощным симисторным
ключом.

В MOC3052 падение напряжения на светодиоде равно 3 В, а ток — 60 мА,
поэтому при подключении к микроконтроллеру, возможно, придётся
использовать дополнительный транзисторный ключ.

Встроенный симистор же рассчитан на напряжение до 600 В и ток до
1 А. Этого достаточно для управления мощными бытовыми приборами через
второй силовой симистор.

Рассмотрим схему управления резистивной нагрузкой (например, лампой
накаливания).

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET

Таким образом, эта оптопара выступает в роли драйвера
симистора.

Существуют и драйверы с детектором нуля — например, MOC3061. Они
переключаются только в начале периода, что снижает помехи в
электросети.

Резисторы R1 и R2 рассчитываются как обычно. Сопротивление же
резистора R3 определяется исходя из пикового напряжения в сети питания
и отпирающего тока силового симистора. Если взять слишком большое —
симистор не откроется, слишком маленькое — ток будет течь
напрасно. Резистор может потребоваться мощный.

Нелишним будет напомнить, что 230 В в электросети (текущий стандарт для
России, Украины и многих других стран) — это значение
действующего напряжения. Пиковое напряжение равно \(\sqrt2 \cdot 230 \approx
325\,\textrm{В}\).

Схема цифрового ключа на МДП-транзисторе с нагрузочным МДП-транзистором

Изобразим схему цифрового ключа на МДП-транзисторе с нагрузочным МДП-транзистором (с динамической нагрузкой) (рис. 3.19).

Отметим, что при использовании интегральной технологии такой ключ, как ни странно на первый взгляд, изготовить проще в сравнении с рассмотренным выше (ССЫЛКА), имеющим нагрузочный резистор. Транзистор Т1 называют активным, а транзисторТ2 — нагрузочным.

Вначале рассмотрим закрытое состояние ключа. При этом uвх < Uзи.nopoгl , где Uзи.nopoгl — пороговое напряжение для транзистора T1. В этом случае транзистор Т1 закрыт и через оба транзистора протекает очень малый ток (обычно не более 1 нА). При этом напряжение uси1близко к напряжению Ес, а напряжение uси1 близко к нулю.

По крайней мере очевидно, что напряжение uси2не может быть больше порогового напряжения Uзu.nopoг2 для транзистора Т2, иначе бы транзистор Т2 открылся и напряжение на нем уменьшилось.

Теперь рассмотрим открытое состояние ключа. При этом uвх> uзи.порог1. Транзистор Т1 открыт и напряжение uси1 близко к нулю, а напряжение на транзисторе Т2 близко к напряжению питания.

В рассматриваемом состоянии транзистор Т2 также открыт, при этом uзи2= uси2= Ес. Но транзисторы конструируют таким образом, чтобы удельная крутизна транзистора Т2 была намного меньше, чем удельная крутизна транзистора T1 .Именно поэтому в открытом состоянии ключа uси1 = 0 (часто это напряжение лежит в пределах 50…100 мВ). Так как удельная крутизна транзистора Т2 мала, ток, протекающий через открытый ключ, сравнительно мал.

Примеры работы

Работа с одним модулем

Создадим автоматическую подсветку лестницы. Подключим восемь отдельных кусков светодиодной ленты к сборке силовых ключей на пине . Будем по очереди зажигать каждую ступень, после чего все потушим.

Код для Arduino

singleFET.ino
// библиотека для работы с модулями по интрефейсу SPI
#include <SPI.h>
// библиотека для работы со сборкой силовых ключей
#include <AmperkaFET.h>
// пин выбора устройства на шине SPI
#define PIN_CS  A0
 
// создаём объект mosfet для работы со сборкой силовых ключей
// передаём номер пина выбора устройства на шине SPI
FET mosfet(PIN_CS);
 
void setup() {
  // начало работы с силовыми ключами
  mosfet.begin();
}
 
void loop() {
  for(int i = ; i < 8; i++ ) {
    // включаем по очереди каждый ключ на модуле
    mosfet.digitalWrite(i, HIGH);
    // ждём пол секунды
    delay(500);
  }
  // выключаем все ключи на модуле
  mosfet.digitalWrite(ALL, LOW);
  delay(500);
}

Код для Iskra JS

singleFET.js
// инициализируем SPI2
SPI2.setup({
  baud 3200000,
  mosi B15,
  sck  B13,
  miso B14
});
 
// подключаем модуль для работы со сборкой силовых ключей
var mosfet = require('@amperka/x-fet').connect({
  cs     A0,   // пин cs нужен для обращения к ключам
  spi    SPI2, // интерфейс SPI к которому подключены ключи
  qtyMod 1     // количество модулей в цепочке
});
 
// переменная счетчик
var counter = ;
// вермя в милисекундах на переключение
var time = 1000;
// кол-во переключаемых выходов от 1 до 8;
var pins = 8;
 
// запускаем функцию которая переключает выходы 
setInterval(() => {
  if (counter === pins) {
    counter = ;
    mosfet.turnAllOff();
  } else {
    mosfet.turnOn(counter);
    counter++;
  }
}, time);

После прошивки вы увидите поочерёдное включение ключей.
Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET

Работа с группой модулей

Сборка силовых ключей позволяет последовательное подключение между собой в цепочку (гирлянду). Каждое новый модуль — восемь дополнительных ключей для управления силовыми устройствами. Это позволяет управлять тоннами устройств без дополнительных пинов.

Подключим к предыдущему примеру ещё два P-FET модуля с подключёнными светодиодными лентами.

Код для Arduino

multipleFET.ino
// библиотека для работы с модулями по интерфейсу SPI
#include <SPI.h>
// библиотека для работы со сборкой силовых ключей
#include <AmperkaFET.h>
// пин выбора сборки устройств на шине SPI
#define PIN_CS  A0
 
 
// создаём объект mosfet для работы со сборкой силовых ключей
// передаём номер пина выбора устройств на шине SPI
// и количество устройств подключённых в цепочке
FET mosfet(PIN_CS, 3);
 
void setup() {
  // начало работы с силовыми ключами
  mosfet.begin();
}
 
void loop() {
  // включаем второй ключ на нулевом модуле
  mosfet.digitalWrite(, 2, HIGH);
  // ждём пол секунды
  delay(500);
  // включаем пятый ключ на первом модуле
  mosfet.digitalWrite(1, 5, HIGH);
  // ждём пол секунды
  delay(500);
  // включаем все ключи на втором модуле
  mosfet.digitalWrite(2, ALL, HIGH);
  // ждём пол секунды
  delay(500);
  // выключаем все ключи на всех модулях
  mosfet.digitalWrite(ALL, ALL, LOW);
  // ждём пол секунды
  delay(500);
}

Код для Iskra JS

multipleFET.js
// инициализируем SPI2
SPI2.setup({
  baud 3200000,
  mosi B15,
  sck B13,
  miso B14
});
 
// подключаем модуль для работы со сборкой силовых ключей
var mosfet = require('@amperka/x-fet').connect({
  cs A0, // пин cs нужен для обращения к ключам
  spi SPI2, // интерфейс SPI к которому подключены ключи
  qtyMod 3 // количество модулей в цепочке
});
 
// вермя в милисекундах на переключение
var time = 5000;
 
// запускаем функцию которая переключает выходы
setinterval(() => {
  mosfet.turnOn(2, );
  setTimeout(() => {
    mosfet.turnOn(5, 1);
    setTimeout(() => {
      mosfet.turnAllOn(2);
      setTimeout(() => {
        mosfet.turnAllOff();
      }, time  4);
    }, time  4);
  }, time  4);
}, time);

После прошивки вы увидите следующую картину.
Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET

Популярные статьи  Мини отрезной станок своими руками

Доработка схемы

Если вход схемы подключен к push-pull выходу, то особой доработки не
требуется. Рассмотрим случай, когда вход — это просто выключатель,
который либо подтягивает базу к питанию, либо оставляет её «висеть в
воздухе». Тогда для надёжного закрытия транзистора нужно добавить ещё
один резистор, выравнивающий напряжение между базой и эмиттером.

Кроме того, нужно помнить, что если нагрузка индуктивная, то
обязательно нужен защитный диод. Дело в том, что энергия, запасённая
магнитным полем, не даёт мгновенно уменьшить ток до нуля при
отключении ключа. А значит, на контактах нагрузки возникнет напряжение
обратной полярности, которое легко может нарушить работу схемы или
даже повредить её.

Совет касательно защитного диода универсальный и в равной степени
относится и к другим видам ключей.

Если нагрузка резистивная, то диод не нужен.

В итоге усовершенствованная схема принимает следующий вид.

Резистор R2 обычно берут с сопротивлением, в 10 раз большим, чем
сопротивление R1, чтобы образованный этими резисторами делитель не
понижал слишком сильно напряжение между базой и эмиттером.

Для нагрузки в виде реле можно добавить ещё несколько
усовершенствований. Оно обычно кратковременно потребляет большой ток
только в момент переключения, когда тратится энергия на замыкание
контакта. В остальное время ток через него можно (и нужно) ограничить
резистором, так как удержание контакта требует меньше энергии.

Для этого можно применить схему, приведённую ниже.

В момент включения реле, пока конденсатор C1 не заряжен, через него
идёт основной ток. Когда конденсатор зарядится (а к этому моменту реле
перейдёт в режим удержания контакта), ток будет идти через резистор
R2. Через него же будет разряжаться конденсатор после отключения реле.

Ёмкость C1 зависит от времени переключения реле. Можно взять,
например, 10 мкФ.

С другой стороны, ёмкость будет ограничивать частоту переключения
реле, хоть и на незначительную для практических целей величину.

Схема ускоренного включения

Как уже было сказано, если напряжение на затворе относительно истока
превышает пороговое напряжение, то транзистор открывается и
сопротивление сток — исток мало. Однако, напряжение при включении не
может резко скакнуть до порогового. А при меньших значениях транзистор
работает как сопротивление, рассеивая тепло. Если нагрузку приходится
включать часто (например, в ШИМ-контроллере), то желательно как можно
быстрее переводить транзистор из закрытого состояния в открытое и
обратно.

Относительная медленность переключения транзистора связана опять же с
паразитной ёмкостью затвора. Чтобы паразитный конденсатор зарядился
как можно быстрее, нужно направить в него как можно больший ток. А так
как у микроконтроллера есть ограничение на максимальный ток выходов,
то направить этот ток можно с помощью вспомогательного биполярного
транзистора.

Кроме заряда, паразитный конденсатор нужно ещё и разряжать. Поэтому
оптимальной представляется двухтактная схема на комплементарных
биполярных транзисторах (можно взять, например, КТ3102 и КТ3107).

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET

Ещё раз обратите внимание на расположение нагрузки для n-канального
транзистора — она расположена «сверху». Если расположить её между
транзистором и землёй, из-за падения напряжения на нагрузке напряжение
затвор — исток может оказаться меньше порогового, транзистор откроется
не полностью и может перегреться и выйти из строя

Виды транзисторов

Каждая из ветвей отличается на 0.

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET
Изображение схем подключения полевых триодов Практически каждая схема способна работать при очень низких входных напряжениях. Схема включения MOSFET Традиционная, классическая схема включения «мосфет», работающего в режиме ключа открыт-закрыт , приведена на рис 3.

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET

Испытания показали, что транзисторный ключ прекрасно работает, подавая напряжение на нагрузку. Транзисторы управляются напряжением, и в статике не потребляют ток управления.

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET
Если к такому транзистору приложить напряжение, к стоку плюс, а к истоку минус, через него потечет ток большой величины, он будет ограничен только сопротивлением канала, внешними сопротивлениями и внутренним сопротивлением источника питания. Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Среди них можно выделить: биполярные транзисторы с внедрёнными и их схему резисторами; комбинации из двух триодов одинаковых или разных структур в одном корпусе; лямбда-диоды — сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением; конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом применяются для управления электромоторами. Чтобы на резисторе Rи не выделялась переменная составляющая напряжения, его шунтируют конденсатором Си.

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET
Каскад с общим истоком дает очень большое усиление тока и мощности. Разница потенциалов достигает величины от 0,3 до 0,6 В. Только вот стрелки на условном изображении полевых транзисторов имеют направление, прямо противоположное своим биполярным аналогам.

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET
Это значит что нужно этого избежать, введя каскад с высоким входным сопротивлением. Стабильность при изменении температуры. При некотором напряжении Uси происходит сужение канала, при котором границы обоих р-n- переходов сужаются и сопротивление канала становится высоким. Это возможно благодаря тому, что не используется инжекция неосновных носителей заряда.

Принцип работы триода При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается. Поэтому использование такого подхода на практике сильного ограничено в усилительной технике.

Также сюда подключается и усилитель колебаний. Функцию затвора исполняет металлический вывод, который отделяется от кристалла слоем диэлектрика и, таким образом, электрически с ним не контактирует. Защита от переполюсовки на основе полевого транзистора

Оценка, необходимая для оптимального выбора силового ключа

Выбор нужного силового ключа для импульсного ИП требует детальной оценки множества параметров. Напряжение насыщения, пороговое напряжение, крутизна передаточной характеристики и пиковый ток влияют на рабочие характеристики, а запирающее напряжение, ток утечки и тепловые характеристики оказывают существенное влияние на надежность устройства.

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET

Рис. 1. Потери в ключах являются основной причиной общих потерь в схемах силовой электроники

Потери энергии в силовых ключах можно разбить на три основные категории: потери на управление, возникающие при подаче сигнала на силовой ключ, коммутационные потери, возникающие при открытии и закрытии силового ключа, и потери на проводимость, возникающие в открытом состоянии ключа (рис. 1). На частотах коммутации ниже 10 кГц преобладают потери на проводимость. С ростом частоты начинают преобладать потери на управление и коммутационные потери (рис. 2).

Рис. 2. Увеличение потерь возбуждения и коммутационных потерь

Потери каждого типа можно рассчитать по известным характеристикам полупроводникового прибора: на управление — по заряду затвора Qg; коммутационные — по сопротивлению затвора Rg и паразитным емкостям прибора Ciss (входная), Coss(выходная) и Crss (емкость обратной передачи) или по характеристикам заряда затвора; на проводимость — по сопротивлению в открытом состоянии Ron. И сопротивление в открытом состоянии, и паразитные емкости очень важны в работающих на высокой частоте силовых ключах с низкой добротностью, которая определяется как произведение Qg на Ron. Таким образом, для оценки потерь нужны приборы, способные измерять эти характеристики.

Первым этапом проектирования эффективного ИП является выбор силового ключа с хорошим балансом между сопротивлением в открытом состоянии и паразитными емкостями. Заряд затвора определяется как заряд, необходимый для полного открытия силового ключа. Также его можно рассматривать как параметр, представляющий нелинейные характеристики входной емкости (Ciss = Cgs+Cgd).

Популярные статьи  Самодельный фиксатор скотча

Заряд затвора — это общее количество заряда, необходимое для полного открытия силового ключа. Его можно рассчитать как интеграл по времени от тока, протекающего через затвор при переходе ключа в открытое состояние. Потери на управление рассчитываются при этом как произведение заряда затвора, напряжения затвора и частоты (рис. 3).

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET

Рис. 3. Расчет потерь возбуждения по заряду затвора

Как показано на рис. 4, заряд затвора описывается непрерывной кривой, состоящей из трех участков с разным наклоном.

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET

Рис. 4. Теоретическое представление кривой Qg

Если ток затвора Ig постоянен, то заряд затвора равен произведению Ig на время t. При этом кривую Qg можно получить, измеряя напряжение на затворе Vgs.

Первый участок кривой Qg представляет нарастание Vgs, во время которого емкость Ciss_off заряжается током Ig, и ключ находится в закрытом состоянии. Этот участок кривой описывается уравнением Vgs = (1/Ciss_off) × Qg. Поскольку Cgs обычно значительно больше, чем Crss, формулу можно упростить: Vgs = (1/Cgs) × Qg. Заряд затвора для этого участка обозначен как Qgs. Когда Vgs становится выше порогового напряжения (Vth), начинает протекать ток стока (или коллектора). В этом участке Vgs нарастает до тех пор, пока ток стока не достигнет номинального тока по характеристике Id–Vgs.

На втором участке (горизонтальном), когда ключ переходит в полностью открытое состояние, Vgs не нарастает, поскольку весь ток Ig втекает в Crss.

Рис. 5. Определение Qg по нелинейной зависимости Crss–Vdg

На рис. 5 показаны емкостные характеристики транзистора, а на рис. 5г — зависимость Crss от напряжения. Изменения Crss можно разделить на две четко отличающиеся области:

Vds>Vgs, Crss растет с уменьшением Vds. Увеличение заряда Qgd1 описывается формулой:

где Qgd1 называется зеркальным зарядом.

В области Vgs >Vgd Crss существенно увеличивается из-за возникновения канала под затвором в результате открытия ключа. Увеличение заряда Qgd2 описывается формулой:

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET

Значение Ciss_on получается из характеристики Vgs–Ciss, как показано на рис. 5в. На этом участке заряд называется Qgd. Величина Qgd зависит от напряжения стока (или коллектора) в закрытом состоянии и от Crss — в открытом.

Qgd = Qgd1+Qgd2.        (3)

Значение Qgd ограничивает ключевые характеристики полупровод­никового прибора.

На последнем участке ключ полностью открыт, и заряд Ciss_on продолжается. Vgs описывается уравнением Vgs = (1/Ciss_on) × Qg.

Принцип действия

Преобразователь напряжение вырабатывает напряжение питания необходимой величины из иного питающего напряжения, к примеру, для питания определенной аппаратуры от аккумулятора. Одним из главных требований, которые предъявляются к преобразователю, является обеспечение максимального коэффициента полезного действия. Преобразование переменного напряжения легко можно выполнить при помощи трансформатора, вследствие чего подобные преобразователи постоянного напряжения часто создаются на базе промежуточного преобразования постоянного напряжения в переменное.

  • Мощный генератор переменного напряжения, который питается от источника исходного постоянного напряжения, соединяется с первичной обмоткой трансформатора.
  • Переменное напряжение необходимой величины снимается с вторичной обмотки, которое потом выпрямляется.
  • В случае необходимости постоянное выходное напряжение выпрямителя стабилизируется при помощи стабилизатора, который включен на выходе выпрямителя, либо с помощью управления параметрами переменного напряжения, которое вырабатывается генератором.
  • Для получения высокого кпд в преобразователях напряжения используются генераторы, которые работают в ключевом режиме и вырабатывают напряжение с использованием логических схем.
  • Выходные транзисторы генератора, которые коммутируют напряжение на первичной обмотке, переходят из закрытого состояния (ток не течет через транзистор) в состояние насыщения, где на транзисторе падает напряжение.
  • В преобразователях напряжения высоковольтных источников питания в большинстве случаев применяется эдс самоиндукции, которая создается на индуктивности в случаях резкого прерывания тока. В качестве прерывателя тока работает транзистор, а первичная обмотка повышающего трансформатора выступает индуктивностью. Выходное напряжение создается на вторичной обмотке и выпрямляется. Подобные схемы способны вырабатывать напряжение до нескольких десятков кВ. Их часто применяют для питания электронно-лучевых трубок, кинескопов и так далее. При этом обеспечивается кпд выше 80%.

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET Принципиальная схема Бестрансформаторного преобразователя напряжения.

Принципы работы полевых транзисторов в электронных схемах: упрощенная информация

Все сложные процессы электроники удобно представлять на примере обычного водопроводного крана с рукояткой, которая позволяет перекрывать воду или регулировать ее напор от очень тонкой струйки (течь) до максимально сильного проходящего потока.

Показал это примитивной картинкой, на которой:

  • входной патрубок с напором назван стоком;
  • место выхода воды (истечения) обозначен истоком;
  • рукоятка управления или вентиль со штоком — затвор.

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET

Аналогичным образом работает рассматриваемая нами электрическая схема полевого транзистора. Только у нее между стоком и истоком приложено основное постоянное напряжение. Эту область называют каналом. Он выполнен из полупроводника определенной структуры:

  1. n-типа (преобладают электроны — носители отрицательных зарядов);
  2. p-типа — с излишком положительных дырок.

На чертежах эти выводы показываются одним из следующих образов.

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET

На обозначении затвора нам надо обращать внимание на направление стрелки. У полупроводников n- канального типа она направлена на затвор, а с p- проводимостью — в противоположную сторону

Любой field-effect transistors является полупроводником, причем управляемым. Это значит, что он пропускает через себя нагрузку исключительно в одну сторону, а противоположное движение электрических зарядов всегда заблокировано.

Движение тока через полупроводниковые переходы всегда направлено от стока к истоку, как и воды в кране

Это важно запомнить.. Функции закрытия или открытия этого крана (затвора), а также роль регулирования силы потока электрических зарядов возложены на затвор

Здесь действует известный всем закон Ома:

Функции закрытия или открытия этого крана (затвора), а также роль регулирования силы потока электрических зарядов возложены на затвор. Здесь действует известный всем закон Ома:

Сопротивление среды канала управляет нагрузкой, а на него действует приложенный извне потенциал.

Говоря другими словами: энергия электрического поля, приложенная к затвору, меняет сопротивление внутренних полупроводниковых переходов и влияет на величину тока в выходной силовой цепи.

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET

Слово «поле» здесь знаковое. Оно определило целый ряд транзисторных изделий, работающих по этому принципу управления.

Потенциал электрического поля регулирует величину сопротивления через силовой полупроводниковый слой (канал), закрывая/открывая транзистор или изменяя ток через него.

Аналогичным образом управляются биполярные транзисторы (БТ), про которые у меня на блоге опубликована предыдущая статья.

Управляем нагрузкой одной кнопкой. Как сделать мощный фиксируемый ключ на MOSFET

Только у них силовая цепь образована меду коллектором и эмиттером, а схема управления работает от тока, образованного приложением напряжения между базой и эмиттером. У БТ своя система обозначения выводов, но те же два внутренних контура (силовая цепь и цепочка ее регулирования).

Заостряю внимание: при одном и том же напряжении между входом и выходом полевого транзистора (сток-исток) потенциал на затворе изменяет электрическое сопротивление встроенных полупроводниковых переходов.

Причем происходит это по одному из предусмотренных заранее сценариев. О них я последовательно рассказываю дальше.

Рейтинг
( Пока оценок нет )
Денис Серебряков/ автор статьи
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: